函数求一个n阶方阵右下三角元素的和包括副对角线上的元素。

时间: 2023-08-07 15:06:46 浏览: 198
可以使用两层循环遍历矩阵,将右下三角的元素相加即可,包括副对角线上的元素。具体实现如下: ```python def sum_right_lower(matrix): n = len(matrix) res = 0 for i in range(n): for j in range(i, n): res += matrix[i][j] if i != j: res += matrix[j][i] return res ``` 其中,`matrix`是一个n阶方阵,`n`是方阵的阶数,`res`是结果变量。在循环中,首先遍历行`i`,再遍历列`j`,如果当前元素在右下三角范围内,则将其加入结果中。注意,副对角线上的元素需要特别处理,即当`i`不等于`j`时,将`matrix[j][i]`也加入结果中。最后返回结果即可。
相关问题

题目:用函数求一个N阶方阵右下三角元素的和(包括副对角线上的元素)。

要计算一个N阶方阵右下三角元素的和(包括副对角线上的元素),我们可以编写一个函数,遍历方阵的每一行和每一列,累加右下三角区域内的元素。右下三角区域包括副对角线上的所有元素,即从方阵的右下角到左上角的对称区域。 下面提供一个简单的示例代码,使用Python语言实现上述功能: ```python def sum_of_right_triangle(matrix): n = len(matrix) # 方阵的阶数 sum = 0 # 初始化和为0 for i in range(n): for j in range(n - i - 1): sum += matrix[i][j] # 只累加右下三角部分的元素 return sum # 示例方阵 matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] # 调用函数计算和 result = sum_of_right_triangle(matrix) print(result) # 输出结果 ``` 在这个代码中,`sum_of_right_triangle` 函数接收一个二维列表(即方阵)作为参数,并计算其右下三角元素的和。遍历是从方阵的右上角开始,对每一行,我们只需要遍历到副对角线之前即可,即 `n - i - 1` 列。

写程序填充方阵。其规则是一个n×n方阵,副对角线填1,右下三角填2,左上三角填3。通

可以使用双层for循环嵌套来填充方阵。首先,创建一个n×n的数组作为方阵。然后,通过双层for循环按照规则对方阵进行填充。 具体步骤如下所示: ``` def fill_matrix(n): matrix = [[0]*n for _ in range(n)] # 创建一个n×n的方阵 for i in range(n): for j in range(n): if i + j == n - 1: # 副对角线 matrix[i][j] = 1 elif i > j: # 左上三角 matrix[i][j] = 3 else: # 右下三角 matrix[i][j] = 2 return matrix n = int(input("请输入方阵的大小n:")) result = fill_matrix(n) for row in result: print(row) ``` 以上代码中,首先定义了一个名为`fill_matrix()`的函数,该函数接受一个参数n,表示方阵的大小。在函数内部,通过嵌套的for循环遍历方阵的每个元素,并根据规则进行填充。当行索引和列索引之和等于n-1时,表示处于副对角线位置,将其填充为1;当行索引大于列索引时,表示处于左上三角位置,将其填充为3;否则,表示处于右下三角位置,将其填充为2。 最后,通过调用该函数,并提供方阵大小n,得到填充后的方阵。然后,通过for循环遍历打印出方阵的每一行,实现了填充方阵的目的。
阅读全文

相关推荐

最新推荐

recommend-type

C语言实现3*3数组对角线之和示例

在本文中,我们将深入探讨如何使用C语言计算一个3x3二维数组的主对角线和副对角线元素之和。首先,我们要理解数组的基本概念。数组是C语言中的一种数据结构,它允许我们存储同一类型的数据集合。在本例中,我们使用...
recommend-type

JAVA JDK8 List分组获取第一个元素的方法

JAVA JDK8 List分组获取第一个元素的方法 在Java 8中,List分组获取第一个元素的方法是通过使用Stream API和Collectors来实现的。下面是对该方法的详细介绍: 首先,需要了解Java 8中的Stream API,它允许开发者...
recommend-type

python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案

在Python中,对任意数据和曲线进行拟合并求出函数表达式是数据分析和科学计算中的常见任务。这里我们将探讨三种不同的解决方案:多项式拟合、使用`scipy.optimize.curve_fit`进行非线性拟合以及拟合高斯分布。这些...
recommend-type

计算机基础知识及应用技术总结

内容概要:文档涵盖计算机基础知识,包括计算机历史(首台电子计算机ENIAC)、设计架构原则(冯·洛伊曼提出的五大组件)及其发展四阶段。介绍了计算机的基础概念如二进制、ASCII、国际码及存储单位等;涉及多媒体文件格式分类,计算机网络架构(硬件构成和类型),操作系统(包括服务器和个人计算类型)。解释了进程和线程概念及区别、计算机系统组成及基本组成部分,指令执行机制以及计算机网络的主要优点。最后提及了一些与安全性和数据保护有关的概念比如防火墙。 适合人群:计算机科学初学者或希望通过一级考试的人。 使用场景及目标:①帮助准备全国计算机等级考试一级的考生复习关键知识点;②提供信息技术基础教学资料给相关课程教师。 阅读建议:此文档主要侧重于计算机基础知识的学习,涵盖了从早期计算技术到现代网络技术等多个方面的重要信息。建议结合具体例题理解和记忆文中提到的各种术语和技术细节,在复习时可以通过制作思维导图的方式来加深印象。
recommend-type

基于51单片机RFID智能门禁系统红外人流量计数统计.zip

基于51单片机RFID智能门禁系统红外人流量计数统计 本系统由STC89C52单片机核心板、RFID读卡器模块、继电器、LCD1602液晶显示、蜂鸣器报警、红外避障传感器及电源组成。 1、匹配过的RFID模块检测到刷卡后,继电器闭合。液晶上显示通过字样。3s左右后,继电器自动断开。表示刷卡成功,闸门打开,人员通过。 2、没匹配过的RFID卡刷卡后,继电器不闭合,如果刷入没有写入系统卡蜂鸣器报警,且液晶上的显示不通过字符。 3、通过红外避障传感器计数,如果感应到有人,液晶上计数加1。 资料包含: 程序源码 电路图 任务书 答辩技巧 开题报告 参考论文 系统框图 程序流程图 使用到的芯片资料 器件清单 焊接说明 疑难问题说明 等等
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。