torchvision 实例
时间: 2023-08-14 20:06:24 浏览: 87
下面是一个简单的使用 torchvision 加载数据集并进行训练的示例代码:
```python
import torch
import torchvision
import torchvision.transforms as transforms
# 加载 CIFAR10 数据集
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
# 定义神经网络模型
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 定义损失函数和优化器
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练网络
for epoch in range(2): # 多次循环遍历数据集
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
inputs, labels = data
# 梯度清零
optimizer.zero_grad()
# 前向传播,反向传播,优化
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999: # 每 2000 个 mini-batch 打印一次
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
这个示例代码中我们使用 torchvision.datasets.CIFAR10 加载 CIFAR10 数据集,并使用 torchvision.transforms 对数据进行预处理。然后我们定义了一个简单的卷积神经网络模型,并使用 nn.CrossEntropyLoss 作为损失函数,使用 SGD 作为优化器进行训练。在训练过程中,我们遍历数据集多次,每次遍历都分成多个 mini-batch 进行训练,然后根据损失函数和优化器进行模型的前向传播、反向传播和优化。最后,我们打印了训练过程中的统计信息,以及训练结束的提示。
阅读全文