# 给定三个初始聚类中心 initial_centers = np.vstack((anchor1_df,anchor2_df,anchor3_df)) # 初始化KMeans模型,设置聚类中心数量为3,初始聚类中心为给定的初始值 kmeans = KMeans(n_clusters=3, init=initial_centers) # 对样本数据进行聚类 kmeans.fit(new_model.predict(x_target[:,:,np.newaxis])) # 获取最终的聚类结果 labels = kmeans.labels_ 如何修改上述代码,使其在保证设定初始点不变的情况下变成k-means++算法,以提高k-均值聚类的准确性

时间: 2024-04-17 18:24:21 浏览: 11
要将上述代码修改为使用k-means++算法作为初始点选择方法,可以使用`KMeans`类中提供的`init='k-means++'`参数。这样会自动使用k-means++算法来选择初始聚类中心。以下是修改后的代码: ```python from sklearn.cluster import KMeans # 初始化KMeans模型,设置聚类中心数量为3,使用k-means++算法选择初始聚类中心 kmeans = KMeans(n_clusters=3, init='k-means++') # 对样本数据进行聚类 kmeans.fit(new_model.predict(x_target[:,:,np.newaxis])) # 获取最终的聚类结果 labels = kmeans.labels_ ``` 通过将`init`参数设置为`'k-means++'`,我们告诉`KMeans`模型使用k-means++算法作为初始点选择方法。这样可以提高k-均值聚类的准确性。请注意,我们不再需要提供`initial_centers`参数,因为k-means++算法会自动选择初始聚类中心。 你可以将此代码应用于你的数据,并根据需要进行调整和扩展。
相关问题

解释一下下列代码在python中的意思t = np.arange(0, 2 * np.pi, 0.1) data2_1 = np.vstack((np.cos(t), np.sin(t))).T data2_2 = np.vstack((2*np.cos(t), 2*np.sin(t))).T data2_3 = np.vstack((3*np.cos(t), 3*np.sin(t))).T data2 = np.vstack((data2_1, data2_2, data2_3)) y2 = np.vstack(([0] * len(data2_1), [1] * len(data2_2), [2] * len(data2_3))) params2 = ((0.5, 3), (0.5, 5), (0.5, 10), (1., 3), (1., 10), (1., 20)) datasets = [(data1, y1,params1), (data2, y2,params2)]

这段代码定义了两个模拟数据集,其中第一个数据集data1已经在前面的代码中生成了,第二个数据集data2是由三个同心圆环组成的数据集。 t = np.arange(0, 2 * np.pi, 0.1)生成了一个等差数列t,从0到2π,步长为0.1。这个等差数列被用来生成三个同心圆的坐标。 np.vstack()函数用于将生成的圆环的x和y坐标合并成一个数据集,其中data2_1代表最内层圆的坐标,data2_2代表第二层圆的坐标,data2_3代表最外层圆的坐标。最后使用np.vstack()函数将三个圆环的坐标合并成一个完整的数据集data2。 y2是一个标签数组,用于标识每个样本所属的类别,其中[0] * len(data2_1)表示0这个标签重复len(data2_1)次,[1] * len(data2_2)表示1这个标签重复len(data2_2)次,[2] * len(data2_3)表示2这个标签重复len(data2_3)次。最后使用np.vstack()函数将三个标签数组合并成一个完整的标签数组y2。 params2定义了一组超参数,用于后续的聚类算法中进行调参。其中每个元组表示不同的超参数组合,第一个元素是聚类半径的值,第二个元素是DBSCAN算法中的最小样本数。这些超参数将用于对data2数据集进行聚类。最后,将data1, y1,params1和data2, y2,params2两个数据集和对应的超参数打包成一个列表datasets。

from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels #PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.fit_transform(X_test) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒")优化这段代码,输出其中pca降维的因子负荷量

可以优化代码如下: ``` from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score import numpy as np import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data import datetime # 导入数据集 start = datetime.datetime.now() #计算程序运行时间 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) X_train = mnist.train.images y_train = mnist.train.labels X_test = mnist.test.images y_test = mnist.test.labels # PCA降维 pca = PCA(n_components=10) X_train_pca = pca.fit_transform(X_train) X_test_pca = pca.transform(X_test) # 输出因子负荷量 print("PCA降维后的因子负荷量为:") print(pca.components_) # 可视化 plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=np.argmax(y_train, axis=1)) plt.show() # K-means聚类 kmeans_centers = [] # 用于存储初始类中心 for i in range(10): idx = np.where(np.argmax(y_train, axis=1) == i)[0] # 获取第i类数字的索引列表 sample_idx = np.random.choice(idx) # 随机指定一个样本作为初始类中心 kmeans_centers.append(X_train_pca[sample_idx]) # 将初始类中心添加到列表中 kmeans = KMeans(n_clusters=10,init=kmeans_centers,n_init=1) kmeans.fit(X_train_pca) # 计算分类错误率 y_pred = kmeans.predict(X_test_pca) acc = accuracy_score(np.argmax(y_test, axis=1), y_pred) print("分类错误率:{:.2%}".format(1-acc)) # 计算程序运行时间 end = datetime.datetime.now() print("程序运行时间为:"+str((end-start).seconds)+"秒") ``` 输出结果中包含了PCA降维后的因子负荷量,即`pca.components_`。

相关推荐

import numpy as np import pandas as pd from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from scipy.spatial.distance import cdist import matplotlib.pyplot as plt from pandas import DataFrame from sklearn.decomposition import PCA plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 pd.set_option('display.max_rows', None)#显示全部行 pd.set_option('display.max_columns', None)#显示全部列 np.set_printoptions(threshold=np.inf) pd.set_option('display.max_columns', 9000) pd.set_option('display.width', 9000) pd.set_option('display.max_colwidth', 9000) df = pd.read_csv(r'附件1.csv',encoding='gbk') X = np.array(df.iloc[:, 1:]) X=X[0:,1:] k=93 kmeans_model = KMeans(n_clusters=k, random_state=123) fit_kmeans = kmeans_model.fit(X) # 模型训练 #查看聚类结果 kmeans_cc = kmeans_model.cluster_centers_ # 聚类中心 print('各类聚类中心为:\n', kmeans_cc) kmeans_labels = kmeans_model.labels_ # 样本的类别标签 print('各样本的类别标签为:\n', kmeans_labels) r1 = pd.Series(kmeans_model.labels_).value_counts() # 统计不同类别样本的数目 print('最终每个类别的数目为:\n', r1) # 输出聚类分群的结果 # cluster_center = pd.DataFrame(kmeans_model.cluster_centers_, # columns=[ str(x) for x in range(1,94)]) # 将聚类中心放在数据框中 # cluster_center.index = pd.DataFrame(kmeans_model.labels_). \ # drop_duplicates().iloc[:, 0] # 将样本类别作为数据框索引 # print(cluster_center)代码解释

最新推荐

recommend-type

后端开发是一个涉及广泛技术和工具的领域.docx

后端开发是一个涉及广泛技术和工具的领域,这些资源对于构建健壮、可扩展和高效的Web应用程序至关重要。以下是对后端开发资源的简要介绍: 首先,掌握一门或多门编程语言是后端开发的基础。Java、Python和Node.js是其中最受欢迎的几种。Java以其跨平台性和丰富的库而著名,Python则因其简洁的语法和广泛的应用领域而备受欢迎。Node.js则通过其基于JavaScript的单线程异步I/O模型,为Web开发提供了高性能的解决方案。 其次,数据库技术是后端开发中不可或缺的一部分。关系型数据库(如MySQL、PostgreSQL)和非关系型数据库(如MongoDB、Redis)各有其特点和应用场景。关系型数据库适合存储结构化数据,而非关系型数据库则更适合处理大量非结构化数据。 此外,Web开发框架也是后端开发的重要资源。例如,Express是一个基于Node.js的Web应用开发框架,它提供了丰富的API和中间件支持,使得开发人员能够快速地构建Web应用程序。Django则是一个用Python编写的Web应用框架,它采用了MVC的软件设计模式,使得代码结构更加清晰和易于维护。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Redis配置文件解读:实例解析redis.windows.conf

![Redis配置文件解读:实例解析redis.windows.conf](https://img-blog.csdn.net/20180726010513323?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3lhbmc1NzI2Njg1/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. Redis配置文件概述 Redis配置文件是Redis服务器运行的配置文件,它包含了Redis服务器的各种配置参数。通过修改Redis配置文件,我们可以对Redis服务器的运行行为进行
recommend-type

用js写一个冒泡排序)

好的,下面是 JavaScript 冒泡排序的代码: ```javascript function bubbleSort(arr) { var len = arr.length; for (var i = 0; i < len - 1; i++) { for (var j = 0; j < len - i - 1; j++) { if (arr[j] > arr[j + 1]) { var temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; }
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。