用Java写一个车牌识别带图片,摄像头视频识别的代码
时间: 2024-06-09 18:07:43 浏览: 232
要实现车牌识别,可以使用OpenCV和Tesseract OCR库。下面是一个基于Java和OpenCV的车牌识别代码,可以处理图片和摄像头视频。
```java
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.core.MatOfRect;
import org.opencv.core.Rect;
public class LicensePlateRecognition {
public static void main(String[] args) {
// 加载OpenCV库
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// 读取图片
Mat image = Imgcodecs.imread("car.jpg");
// 在图片中检测车牌
String licensePlate = detectLicensePlate(image);
// 输出车牌号码
System.out.println("License Plate: " + licensePlate);
}
public static String detectLicensePlate(Mat image) {
// 加载车牌识别分类器
CascadeClassifier classifier = new CascadeClassifier("haarcascade_russian_plate_number.xml");
// 转化为灰度图
Mat gray = new Mat();
Imgproc.cvtColor(image, gray, Imgproc.COLOR_BGR2GRAY);
// 进行直方图均衡化
Imgproc.equalizeHist(gray, gray);
// 检测车牌
MatOfRect plates = new MatOfRect();
classifier.detectMultiScale(gray, plates);
// 如果没有检测到车牌,则返回空字符串
if (plates.empty()) {
return "";
}
// 获取最大的车牌框
Rect maxPlate = null;
for (Rect plate : plates.toArray()) {
if (maxPlate == null || plate.width > maxPlate.width) {
maxPlate = plate;
}
}
// 从车牌框中提取车牌区域
Mat plateImage = new Mat(image, maxPlate);
// 将车牌区域转化为灰度图
Imgproc.cvtColor(plateImage, gray, Imgproc.COLOR_BGR2GRAY);
// 进行二值化
Imgproc.threshold(gray, gray, 0, 255, Imgproc.THRESH_BINARY_INV | Imgproc.THRESH_OTSU);
// 调整车牌图像大小
Imgproc.resize(gray, gray, new Size(400, 200));
// 对车牌进行OCR识别
String licensePlate = recognizeLicensePlate(gray);
return licensePlate;
}
public static String recognizeLicensePlate(Mat image) {
// 加载Tesseract OCR库
TessBaseAPI api = new TessBaseAPI();
api.Init(".", "eng");
api.SetImage(image);
// 进行OCR识别
String licensePlate = api.GetUTF8Text().trim();
// 关闭Tesseract OCR库
api.End();
return licensePlate;
}
}
```
车牌识别分类器可以从OpenCV的GitHub仓库中下载,地址为:https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_russian_plate_number.xml
要使用摄像头进行车牌识别,可以使用JavaCV库,下面是一个基于JavaCV的车牌识别代码:
```java
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_videoio.VideoCapture;
import org.bytedeco.opencv.global.opencv_imgproc;
import org.bytedeco.tesseract.TessBaseAPI;
public class LicensePlateRecognition {
public static void main(String[] args) {
// 加载OpenCV库
Loader.load(org.bytedeco.opencv.global.opencv_core.class);
// 加载Tesseract OCR库
TessBaseAPI api = new TessBaseAPI();
api.Init(".", "eng");
// 打开摄像头
VideoCapture camera = new VideoCapture(0);
// 循环读取视频帧
Mat frame = new Mat();
while (camera.read(frame)) {
// 在视频中检测车牌
String licensePlate = detectLicensePlate(frame, api);
// 在视频中显示车牌号码
opencv_imgproc.putText(frame, licensePlate, new Point(50, 50), opencv_imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 255, 0));
// 显示视频帧
imshow("License Plate Recognition", frame);
// 按下ESC键退出循环
if (waitKey(1) == 27) {
break;
}
}
// 关闭Tesseract OCR库
api.End();
}
public static String detectLicensePlate(Mat image, TessBaseAPI api) {
// 加载车牌识别分类器
CascadeClassifier classifier = new CascadeClassifier("haarcascade_russian_plate_number.xml");
// 转化为灰度图
Mat gray = new Mat();
opencv_imgproc.cvtColor(image, gray, opencv_imgproc.COLOR_BGR2GRAY);
// 进行直方图均衡化
opencv_imgproc.equalizeHist(gray, gray);
// 检测车牌
RectVector plates = new RectVector();
classifier.detectMultiScale(gray, plates);
// 如果没有检测到车牌,则返回空字符串
if (plates.empty()) {
return "";
}
// 获取最大的车牌框
Rect maxPlate = null;
for (int i = 0; i < plates.size(); i++) {
Rect plate = plates.get(i);
if (maxPlate == null || plate.width() > maxPlate.width()) {
maxPlate = plate;
}
}
// 从车牌框中提取车牌区域
Mat plateImage = new Mat(image, maxPlate);
// 将车牌区域转化为灰度图
opencv_imgproc.cvtColor(plateImage, gray, opencv_imgproc.COLOR_BGR2GRAY);
// 进行二值化
opencv_imgproc.threshold(gray, gray, 0, 255, opencv_imgproc.THRESH_BINARY_INV | opencv_imgproc.THRESH_OTSU);
// 调整车牌图像大小
opencv_imgproc.resize(gray, gray, new Size(400, 200));
// 对车牌进行OCR识别
api.SetImage(gray);
String licensePlate = api.GetUTF8Text().trim();
return licensePlate;
}
public static void imshow(String title, Mat image) {
CanvasFrame frame = new CanvasFrame(title);
frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
frame.showImage(new OpenCVFrameConverter.ToMat().convert(image));
}
public static int waitKey(int delay) {
return (int) CanvasFrame.waitKey(delay);
}
}
```
阅读全文