vgg16实现数字识别pytorch完整代码

时间: 2023-11-13 10:04:09 浏览: 105
根据提供的引用内容,可以得知该问题中使用的是Keras中的VGG16模型,而非PyTorch。如果您需要使用PyTorch实现数字识别,可以参考引用中提供的完整代码,该代码实现了对MNIST和SVHN数据集的数字识别。该代码使用了PyTorch框架,并且包含了完整的训练和测试代码,可以供您参考和学习。
相关问题

利用在pytorch框架下,写出利用卷积神经网络实现手写数字识别,使用两种不同的神经网络进行训练并比较测试结果的代码

好的,下面是基于PyTorch实现手写数字识别的代码,其中使用了两种不同的卷积神经网络模型进行训练,并比较测试结果的准确率。 首先,我们需要导入必要的Python库和模块: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt ``` 然后,我们可以定义一些超参数,包括批次大小、学习率、训练轮数等: ```python batch_size = 128 learning_rate = 0.001 num_epochs = 10 ``` 接下来,我们可以下载并加载MNIST手写数字数据集,并将其进行预处理: ```python # 定义数据预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载MNIST数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) ``` 然后,我们可以定义两个不同的卷积神经网络模型,分别为LeNet-5和VGG-16: ```python # 定义LeNet-5模型 class LeNet5(nn.Module): def __init__(self): super(LeNet5, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool1(torch.relu(self.conv1(x))) x = self.pool2(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 定义VGG-16模型 class VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() self.conv1 = nn.Conv2d(1, 64, 3, padding=1) self.conv2 = nn.Conv2d(64, 64, 3, padding=1) self.pool1 = nn.MaxPool2d(2, 2) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) self.conv4 = nn.Conv2d(128, 128, 3, padding=1) self.pool2 = nn.MaxPool2d(2, 2) self.conv5 = nn.Conv2d(128, 256, 3, padding=1) self.conv6 = nn.Conv2d(256, 256, 3, padding=1) self.conv7 = nn.Conv2d(256, 256, 3, padding=1) self.pool3 = nn.MaxPool2d(2, 2) self.conv8 = nn.Conv2d(256, 512, 3, padding=1) self.conv9 = nn.Conv2d(512, 512, 3, padding=1) self.conv10 = nn.Conv2d(512, 512, 3, padding=1) self.pool4 = nn.MaxPool2d(2, 2) self.conv11 = nn.Conv2d(512, 512, 3, padding=1) self.conv12 = nn.Conv2d(512, 512, 3, padding=1) self.conv13 = nn.Conv2d(512, 512, 3, padding=1) self.pool5 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(512, 4096) self.fc2 = nn.Linear(4096, 4096) self.fc3 = nn.Linear(4096, 10) def forward(self, x): x = torch.relu(self.conv1(x)) x = torch.relu(self.conv2(x)) x = self.pool1(x) x = torch.relu(self.conv3(x)) x = torch.relu(self.conv4(x)) x = self.pool2(x) x = torch.relu(self.conv5(x)) x = torch.relu(self.conv6(x)) x = torch.relu(self.conv7(x)) x = self.pool3(x) x = torch.relu(self.conv8(x)) x = torch.relu(self.conv9(x)) x = torch.relu(self.conv10(x)) x = self.pool4(x) x = torch.relu(self.conv11(x)) x = torch.relu(self.conv12(x)) x = torch.relu(self.conv13(x)) x = self.pool5(x) x = x.view(-1, 512) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x ``` 接下来,我们可以定义训练函数和测试函数,用于训练和测试模型: ```python # 定义训练函数 def train(model, trainloader, criterion, optimizer, num_epochs): for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, running_loss/len(trainloader))) # 定义测试函数 def test(model, testloader): correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 最后,我们可以定义主函数,用于训练和测试LeNet-5和VGG-16模型: ```python if __name__ == '__main__': # 定义LeNet-5模型、损失函数和优化器 lenet5 = LeNet5() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(lenet5.parameters(), lr=learning_rate) # 训练和测试LeNet-5模型 print('Training LeNet-5...') train(lenet5, trainloader, criterion, optimizer, num_epochs) print('Testing LeNet-5...') test(lenet5, testloader) # 定义VGG-16模型、损失函数和优化器 vgg16 = VGG16() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(vgg16.parameters(), lr=learning_rate) # 训练和测试VGG-16模型 print('Training VGG-16...') train(vgg16, trainloader, criterion, optimizer, num_epochs) print('Testing VGG-16...') test(vgg16, testloader) ``` 运行上述代码,即可训练和测试LeNet-5和VGG-16模型,并比较它们的测试准确率。

pytorch视觉识别

### 关于 PyTorch 用于视觉识别的教程与资源 #### 使用 PyTorch 进行图像分类的基础概念 PyTorch 提供了一个灵活且强大的平台来构建和训练计算机视觉模型。对于初学者来说,可以从简单的手写数字识别任务入手[^1]。 ```python import torch from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=False, transform=transferm) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True) ``` 这段代码展示了如何加载 MNIST 数据集并创建数据加载器,这是许多视觉识别项目的起点。 #### 安装必要的依赖包 为了确保环境配置正确无误,在开始之前应当按照官方指南安装合适的版本: ```bash pip install torch==1.2.0 torchvision===0.4.0 -f https://download.pytorch.org/whl/torch_stable.html --target=/path/to/env/Lib/site-packages ``` 此命令会下载特定版本的 `torch` 和 `torchvision` 并将其放置到指定环境中[^2]。 #### 面向对象的应用实例——人脸识别 当涉及到更复杂的应用场景如人脸识别时,则可以考虑采用预训练好的模型或框架来进行开发工作。例如,Facenet-PyTorch 是一个非常受欢迎的选择之一,它不仅能够高效地完成特征提取任务,而且支持多种输入格式以及便捷的数据增强功能[^3]。 #### 推荐的学习路径 - **基础篇**:从最基础的概念出发,理解张量操作、自动求导机制等核心特性; - **实践篇**:参与一些小型项目练习,比如实现经典的 LeNet 或者 VGG 架构; - **高级篇**:深入研究卷积神经网络的设计原理及其优化技巧;
阅读全文

相关推荐

大家在看

recommend-type

计算机图形学-小型图形绘制程序

计算机图形学-小型图形绘制程序
recommend-type

安装验证-浅谈mysql和mariadb区别

3.5 安装验证 客户机上能够启动软件就说明安装成功。 MotorSolve 成功画面 3.6 帮助 MotorSolve 上端的界面中的帮助按钮,点击可以查看详细的说明
recommend-type

基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip

【资源说明】 基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip基于Python深度学习的目标跟踪系统的设计与实现+全部资料齐全+部署文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

国密SM4加解密SM2签名验签for delphi等语言.rar

基于C#编写的COM组件DLL,可实现SM2签名验签,SM4加解密,100%适用于黑龙江省国家医保接口中进行应用。 1、调用DLL名称:JQSM2SM4.dll 加解密类名:JQSM2SM4.SM2SM4Util CLSID=5B38DCB3-038C-4992-9FA3-1D697474FC70 2、GetSM2SM4函数说明 函数原型public string GetSM2SM4(string smType, string sM2Prikey, string sM4Key, string sInput) 1)参数一smType:填写固定字符串,识别功能,分别实现SM2签名、SM4解密、SM4加密。SM2签名入参填写“SM2Sign”、SM4解密入参填写“SM4DecryptECB”、SM4加密入参填写“SM4EncryptECB”. 2)参数二sM2Prikey:SM2私钥 3)参数三sM4Key:SM4密钥 4)参数四sInput:当smType=SM2Sign,则sInput入参填写SM4加密串;当smType=SM4DecryptECB,则sInput入参填写待解密SM4密文串;当smType=SM4EncryptECB,则sInput入参填写待加密的明文串; 5)函数返回值:当smType=SM2Sign,则返回SM2签名信息;当smType=SM4DecryptECB,则返回SM4解密信息;当smType=SM4EncryptECB,则返回SM4加密信息;异常时,则返回“加解密异常:详细错误说明” 3、购买下载后,可加QQ65635204、微信feisng,免费提供技术支持。 4、注意事项: 1)基于.NET框架4.0编写,常规win7、win10一般系统都自带无需安装,XP系统则需安装;安装包详见压缩包dotNetFx40_Full_x86_x64.exe 2)C#编写的DLL,需要注册,解压后放入所需位置,使用管理员权限运行“JQSM2SM4注册COM.bat”即可注册成功,然后即可提供给第三方软件进行使用,如delphi等。
recommend-type

基于Android Studio开发的安卓的通讯录管理app

功能包含:新增联系人、编辑联系人、删除联系人、拨打电话、发送短信等相关操作。 资源包含源码:1、apk安装包 2、演示视频 3、 基本安装环境、4、运行文档 5、以及源代码

最新推荐

recommend-type

利用PyTorch实现VGG16教程

在PyTorch中实现VGG16模型,我们需要定义一个继承自`nn.Module`的类,然后在`__init__`方法中配置网络结构,最后在`forward`方法中定义前向传播过程。 以下是对提供的代码片段的详细解释: 1. `nn.Conv2d`模块用于...
recommend-type

pytorch获取vgg16-feature层输出的例子

在PyTorch中,VGG16是一种常用的卷积神经网络(CNN)模型,由牛津大学视觉几何组(Visual Geometry Group)开发,并在ImageNet数据集上取得了优秀的图像分类性能。VGG16以其深度著称,包含16个卷积层和全连接层,...
recommend-type

基于卷积神经网络VGG16模型花卉分类与手势识别.docx

综上所述,VGG16模型因其深而窄的结构在图像分类任务中表现出色,通过多层卷积和全连接层实现了特征的逐层抽象和分类。在实际应用中,数据预处理和合理的设计是优化模型性能的关键,而实验结果的分析提供了模型效果...
recommend-type

Pytorch中的VGG实现修改最后一层FC

首先,VGG模型在PyTorch中的实现通常包括多个卷积层模块(Convolutional Layers)和一个分类器(Classifier)模块。分类器模块包含了若干个全连接层,用于将特征映射到不同的类别。例如,VGG19模型的默认分类器包含6...
recommend-type

keras实现VGG16 CIFAR10数据集方式

在本文中,我们将深入探讨如何使用Keras库在CIFAR10数据集上实现VGG16模型。CIFAR10是一个广泛使用的图像识别数据集,包含10个类别的60,000张32x32像素的小型彩色图像。VGG16是一种深度卷积神经网络(CNN),在...
recommend-type

前端基础教程:HTML、CSS、JavaScript动态注册登录相册

在当今的互联网时代,前端开发是构建网站和网页不可或缺的部分。它主要负责网站的视觉效果和用户交互体验。本例的项目文件名为“HTML+CSS+JS注册登录动态相册.rar”,它集中展示了前端开发的三大核心技术:HTML(HyperText Markup Language),CSS(Cascading Style Sheets)和JavaScript。该项目的文件名称列表仅包含一个项——“综合项目”,暗示了该项目是一个集合了前端开发中多个知识点和功能的综合实践。 ### HTML HTML是构建网页内容的骨架,它使用标签(tags)来定义网页的结构和内容。在本项目中,HTML将被用于创建注册、登录表单和动态相册的布局结构。例如,注册页面可能包含以下标签: - `<form>`:用于创建输入表单。 - `<input>`:用于输入框,接收用户输入的文本、密码等。 - `<button>`:用于提交表单或重置表单。 - `<div>`:用于布局分组。 - `<img>`:用于加载图片。 - `<section>`、`<article>`:用于逻辑和内容的分块。 - `<header>`、`<footer>`:用于定义页面头部和尾部。 ### CSS CSS负责网页的样式和外观,通过定义HTML元素的布局、颜色、字体和其他视觉属性来美化网页。在本项目中,CSS将用来设计注册登录界面的视觉效果,以及动态相册中图片的展示方式。使用CSS可能会包括: - 布局样式:如使用`display: flex;`来创建灵活的布局。 - 字体和颜色:设置字体类型、大小、颜色以匹配网站风格。 - 盒模型:定义元素的边距、边框、填充等。 - 响应式设计:确保网站在不同设备和屏幕尺寸上的兼容性。 - 动画效果:使用CSS动画实现平滑的用户交互效果。 ### JavaScript JavaScript为网页提供了动态交互功能。它允许开发者编写脚本来处理用户输入、数据验证以及与后端进行通信。在本项目中,JavaScript将被用在以下方面: - 表单验证:使用JavaScript对用户输入的数据进行实时校验,例如验证邮箱格式、密码强度。 - 动态内容更新:动态加载和更新相册中的图片,可能借助AJAX实现与服务器的数据交互。 - 事件处理:响应用户动作如点击按钮、表单提交等。 - DOM操作:通过JavaScript直接操作文档对象模型(Document Object Model),动态修改网页内容和结构。 ### 正则表达式 正则表达式是一种强大的文本处理工具,经常在JavaScript中用于字符串搜索、替换和验证。在注册登录功能中,正则表达式可以用来: - 验证邮箱:确保输入的邮箱地址符合格式要求。 - 检测密码强度:通过匹配特定模式来确保密码符合安全性要求。 - 提取信息:从文本中提取电话号码、地址等信息。 ### 动态相册 动态相册可能是本项目的亮点,它展示了如何利用前端技术展示和操作图片集合。动态相册的实现可能包括: - 图片轮播:通过定时器或用户操作实现图片的自动或手动轮播。 - 图片上传:允许用户上传图片,并实时展示在页面上。 - 图片缩放和预览:通过鼠标操作放大缩小图片,点击图片可以全屏预览。 ### 综合项目的知识架构 整个“综合项目”围绕HTML、CSS、JavaScript构建了一个完整的用户界面,用户可以从登录、注册开始,到浏览动态相册结束。前端开发者需要对这三个核心的技术有深入的理解和实践经验,才能保证项目既满足功能需求,又拥有良好的用户体验。此外,还需要了解正则表达式在数据校验中的应用,以及一些现代前端开发工具和技术的运用,如jQuery、前端框架(例如React, Vue.js等)、模块打包工具(如Webpack)等。 总的来说,这个项目对初学者而言是一个很好的实践机会,它涵盖了前端开发中的基础和进阶知识点,通过实际操作能够加深对前端技术的理解,并提升解决问题的能力。
recommend-type

Avizo 9.0.0 入门教程:新手快速掌握的10个秘诀

# 摘要 本文全面介绍了Avizo 9.0.0这款先进可视化软件的各个方面。首先概述了软件的基础知识和界面布局,接着深入探讨了数据导入、管理和分析的基本操作。文中详细阐述了图像处理技术,包括图像预处理、增强、分割、特征提取、重建与渲染,并对高级功能如拓扑分析、骨架化、宏命令和脚本自动化进行了介绍。最后,文章还提供了学
recommend-type

用c语言比较多个句子大小并排序

在C语言中,直接比较句子大小通常是不可能的,因为字符串不是基本数据类型,不能直接通过整数比较其长度。但是,你可以通过计算每个句子的字符数组长度来间接地比较它们的“大小”。如果你想对包含句子的结构体数组进行排序,可以使用标准库函数`qsort()`配合自定义的比较函数。 首先,你需要创建一个结构体,比如: ```c typedef struct { char *sentence; int length; // 句子长度 } Sentence; ``` 然后,定义一个比较函数,例如按照长度降序排列: ```c int compare_sentences(const void
recommend-type

2021年HTML项目开发实践

标题和描述中提及的“proyectoweb2021”似乎指向一个以2021年命名的网络项目。由于标题和描述的内容非常有限,并没有提供具体的项目细节,所以难以从中提炼出更详尽的知识点。不过,可以从中推测项目可能是关于开发一个网站,并且与HTML相关。 HTML,全称为超文本标记语言(HyperText Markup Language),是用于构建网页的标准标记语言。HTML的主要功能是定义网页的结构和内容,通过各种标签来标记文本、图片、链接、视频、表单等元素,以此来形成网页的基本框架。HTML文件通常以.html或者.htm为文件扩展名。 根据文件名称“proyectoweb2021-main”,可以推断该压缩包子文件可能包含了网站的主要文件或核心代码。通常,在一个项目中,main通常用来指代主文件或主要入口文件。例如,在网站项目中,main可能指的是包含网站主要布局和功能的核心HTML文件。这个文件可能包含了对其他CSS样式表、JavaScript文件、图片资源以及可能的子HTML文件的引用。 在HTML项目中,以下是一些关键知识点: 1. HTML文档结构:了解一个基本HTML页面的结构,包括<!DOCTYPE html>声明、<html>、<head>、<title>、<body>等基本标签的使用。 2. 元素和标签:掌握各种HTML标签的用法,如标题标签(<h1>到<h6>)、段落标签(<p>)、链接标签(<a>)、图片标签(<img>)、表格标签(<table>)、表单标签(<form>)等。 3. 布局控制:学习如何使用HTML和CSS来控制页面布局,例如使用<div>标签创建区块,利用CSS的盒模型、浮动、定位以及Flexbox或Grid布局系统。 4. 表单设计:理解如何创建交互式表单,包括输入字段(<input>)、文本区域(<textarea>)、复选框(<input type="checkbox">)、单选按钮(<input type="radio">)和提交按钮(<button>或<input type="submit">)等元素的使用。 5. 响应式设计:了解如何让网页在不同设备上均能良好展示,例如通过媒体查询、使用百分比宽度和视口单位,以及适应性图片和媒体。 6. 最佳实践:掌握编写清晰、有组织、可维护的代码的最佳实践,比如使用语义化标签,合理使用注释,保持代码的一致性和可读性。 7. 验证和调试:学习如何使用W3C的HTML验证服务来检查代码的正确性,以及如何调试代码中的常见错误。 8. SEO基础:了解HTML对搜索引擎优化(SEO)的影响,包括使用合适的标题标签、元标签和语义化标记来提高网页在搜索引擎中的排名。 由于提供的信息有限,具体的知识点只能围绕HTML的通用知识和网站开发中常见的元素和实践进行概述。如果该项目包含更详细的描述或代码,那么可能会涉及更具体的知识点,比如项目特定的框架或库(例如Bootstrap、Vue.js、React等)、前端开发中的API使用、数据库交互、服务器端编程等。由于没有更具体的信息,无法进一步深入探讨这些高级主题。
recommend-type

【计算机组成原理深度解析】:华科经典课程的实战指南,助你迅速掌握设计精髓

# 摘要 本文对计算机系统的核心组成进行了深入探讨,包括CPU的设计与优化、存储系统的设计与实现以及输入输出系统与外围设备的工作原理。首先,介绍了CPU的基本结构、工作原理以及性能评估和优化策略。随后,重点分析了内存管理机制、高速缓存原理和磁盘存储系统,特别是固态硬盘技术的优势。最后,通过案例分析,讨论了计算机系统综合设计的方法论、问题诊断与解决以及跨学科视角下的系统集成。本文旨在为