基于STDP规则的脉冲神经网络学习代码
时间: 2023-07-29 10:09:20 浏览: 132
以下是一个基于STDP规则的脉冲神经网络学习的Python代码示例:
```
import numpy as np
# 定义神经元类
class Neuron:
def __init__(self, n_inputs, tau, dt):
self.n_inputs = n_inputs
self.tau = tau
self.dt = dt
self.spike_times = []
self.weights = np.zeros(n_inputs)
self.v = 0.0
# 计算神经元的输出脉冲
def update(self, inputs):
# 计算神经元的输入电流
i_syn = np.dot(inputs, self.weights)
# 计算神经元的膜电位
self.v += (-self.v + i_syn) / self.tau * self.dt
# 如果神经元的膜电位超过阈值,则发放脉冲,并更新权重
if self.v >= 1.0:
self.spike_times.append(len(self.spike_times) * self.dt)
delta_w = np.zeros(self.n_inputs)
for i in range(self.n_inputs):
if inputs[i] == 1:
delta_w[i] = 0.1
else:
delta_w[i] = -0.1
self.weights += delta_w
self.v = 0.0
# 定义脉冲神经网络类
class SpikingNeuralNetwork:
def __init__(self, n_inputs, n_neurons, tau, dt):
self.n_inputs = n_inputs
self.n_neurons = n_neurons
self.tau = tau
self.dt = dt
self.neurons = [Neuron(n_inputs, tau, dt) for i in range(n_neurons)]
# 将输入转换为脉冲序列
def convert_input(self, inputs):
spikes = []
for i in range(self.n_inputs):
if inputs[i] == 1:
spikes.append([i * self.dt])
return spikes
# 将输出脉冲序列转换为输出
def convert_output(self, spikes):
outputs = np.zeros(self.n_neurons)
for i in range(self.n_neurons):
for j in range(len(spikes[i])):
t = spikes[i][j]
outputs[i] += np.exp(-(len(spikes[i]) - j) * self.dt / self.tau)
return outputs
# 训练网络
def train(self, inputs, targets, n_epochs):
for epoch in range(n_epochs):
for i in range(len(inputs)):
spikes = self.convert_input(inputs[i])
for j in range(self.n_neurons):
self.neurons[j].update(spikes[j])
outputs = self.convert_output([neuron.spike_times for neuron in self.neurons])
for j in range(self.n_neurons):
for k in range(self.n_inputs):
self.neurons[j].weights[k] += (targets[i][j] - outputs[j]) * (spikes[j][-1] - k * self.dt) * 0.1
```
在该示例中,定义了一个Neuron类和一个SpikingNeuralNetwork类来实现神经元和脉冲神经网络的功能。其中,Neuron类包含了神经元的权重、膜电位和输出脉冲等信息,以及计算神经元输出脉冲的update方法。SpikingNeuralNetwork类包含了多个神经元对象,以及将输入、输出转换为脉冲序列的方法和训练网络的方法。
训练方法中使用了STDP规则来更新权重,即当一个神经元发放脉冲时,会引起与其连接的神经元的权重增加,而当一个神经元没有发放脉冲时,会引起与其连接的神经元的权重减少。
阅读全文