cyclegan代码
时间: 2023-09-10 12:09:50 浏览: 145
引用提到了一些参考资料,其中知乎量子位的分享和GitHub上的代码可以帮助理解和实现CycleGAN。引用中的链接也提供了对CycleGAN的原理解释。而引用则提到了CycleGAN中Generator网络部分的结构和一些细节,包括降采样、残差连接、上采样以及使用的Normalization方法。综合这些资料,可以帮助你更好地理解和实现CycleGAN的代码。
相关问题
cycle GAN代码
这里是一个简单的CycleGAN代码示例,使用PyTorch实现。CycleGAN是一种无监督的图像转换模型,可以将一类图像转换为另一类图像。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from PIL import Image
class CycleGANDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.img_names = os.listdir(root_dir)
self.transform = transform
def __len__(self):
return len(self.img_names)
def __getitem__(self, idx):
img_name = self.img_names[idx]
img_path = os.path.join(self.root_dir, img_name)
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True)
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return decoded
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=4, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=1)
def forward(self, x):
x = nn.functional.leaky_relu(self.conv1(x), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn2(self.conv2(x)), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn3(self.conv3(x)), 0.2, inplace=True)
x = nn.functional.leaky_relu(self.bn4(self.conv4(x)), 0.2, inplace=True)
x = torch.sigmoid(self.conv5(x))
return x
class CycleGAN():
def __init__(self, device, lr=0.0002, lambda_cycle=10):
self.device = device
self.generator_A = Generator().to(device)
self.generator_B = Generator().to(device)
self.discriminator_A = Discriminator().to(device)
self.discriminator_B = Discriminator().to(device)
self.optimizer_G = optim.Adam(list(self.generator_A.parameters()) + list(self.generator_B.parameters()), lr=lr, betas=(0.5, 0.999))
self.optimizer_D = optim.Adam(list(self.discriminator_A.parameters()) + list(self.discriminator_B.parameters()), lr=lr, betas=(0.5, 0.999))
self.criterion_cycle = nn.L1Loss()
self.criterion_adv = nn.BCELoss()
self.lambda_cycle = lambda_cycle
def train(self, dataloader_A, dataloader_B, num_epochs):
self.generator_A.train()
self.generator_B.train()
self.discriminator_A.train()
self.discriminator_B.train()
for epoch in range(num_epochs):
for i, (real_A, real_B) in enumerate(zip(dataloader_A, dataloader_B)):
# Move data to device
real_A, real_B = real_A.to(self.device), real_B.to(self.device)
# Train generators
self.optimizer_G.zero_grad()
# Adversarial loss
fake_B = self.generator_A(real_A)
pred_fake_B = self.discriminator_B(fake_B)
loss_adv_B = self.criterion_adv(pred_fake_B, torch.ones_like(pred_fake_B))
fake_A = self.generator_B(real_B)
pred_fake_A = self.discriminator_A(fake_A)
loss_adv_A = self.criterion_adv(pred_fake_A, torch.ones_like(pred_fake_A))
# Cycle consistency loss
cycle_A = self.generator_B(fake_B)
loss_cycle_A = self.criterion_cycle(cycle_A, real_A)
cycle_B = self.generator_A(fake_A)
loss_cycle_B = self.criterion_cycle(cycle_B, real_B)
# Total generator loss
loss_G = loss_adv_A + loss_adv_B + self.lambda_cycle * (loss_cycle_A + loss_cycle_B)
loss_G.backward()
self.optimizer_G.step()
# Train discriminators
self.optimizer_D.zero_grad()
# Real loss
pred_real_A = self.discriminator_A(real_A)
loss_real_A = self.criterion_adv(pred_real_A, torch.ones_like(pred_real_A))
pred_real_B = self.discriminator_B(real_B)
loss_real_B = self.criterion_adv(pred_real_B, torch.ones_like(pred_real_B))
# Fake loss
pred_fake_A = self.discriminator_A(fake_A.detach())
loss_fake_A = self.criterion_adv(pred_fake_A, torch.zeros_like(pred_fake_A))
pred_fake_B = self.discriminator_B(fake_B.detach())
loss_fake_B = self.criterion_adv(pred_fake_B, torch.zeros_like(pred_fake_B))
# Total discriminator loss
loss_D = (loss_real_A + loss_fake_A + loss_real_B + loss_fake_B) * 0.25
loss_D.backward()
self.optimizer_D.step()
# Print loss
if i % 100 == 0:
print('[Epoch %d/%d] [Batch %d/%d] [D loss: %.4f] [G loss: %.4f]' %
(epoch+1, num_epochs, i+1, min(len(dataloader_A), len(dataloader_B)), loss_D.item(), loss_G.item()))
# Example usage
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
transform = transforms.Compose([transforms.Resize(256), transforms.RandomCrop(256), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_A = CycleGANDataset('path/to/dataset_A', transform=transform)
dataset_B = CycleGANDataset('path/to/dataset_B', transform=transform)
dataloader_A = DataLoader(dataset_A, batch_size=1, shuffle=True)
dataloader_B = DataLoader(dataset_B, batch_size=1, shuffle=True)
cyclegan = CycleGAN(device, lr=0.0002, lambda_cycle=10)
cyclegan.train(dataloader_A, dataloader_B, num_epochs=200)
```
CycleGAN代码
CycleGAN是一种无监督图像转换算法,可以将一组图像从一个领域转换到另一个领域。以下是使用PyTorch实现CycleGAN的基本代码。
首先,我们需要导入必要的库:
```python
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import transforms
import matplotlib.pyplot as plt
```
接下来,我们定义一些超参数:
```python
# Hyperparameters
batch_size = 1
epochs = 200
learning_rate = 0.0002
image_size = 256
input_nc = 3 # Number of input channels
output_nc = 3 # Number of output channels
```
然后,我们定义生成器和判别器的架构:
```python
# Generator architecture
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# Encoder
self.enc1 = nn.Sequential(nn.Conv2d(input_nc, 64, 4, stride=2, padding=1), nn.LeakyReLU(0.2, True))
self.enc2 = nn.Sequential(nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, True))
self.enc3 = nn.Sequential(nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, True))
self.enc4 = nn.Sequential(nn.Conv2d(256, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True))
self.enc5 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True))
self.enc6 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True))
self.enc7 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True))
self.enc8 = nn.Sequential(nn.Conv2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True))
# Decoder
self.dec1 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True))
self.dec2 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True))
self.dec3 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True))
self.dec4 = nn.Sequential(nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), nn.BatchNorm2d(512), nn.ReLU(True))
self.dec5 = nn.Sequential(nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.ReLU(True))
self.dec6 = nn.Sequential(nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.ReLU(True))
self.dec7 = nn.Sequential(nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), nn.BatchNorm2d(64), nn.ReLU(True))
self.dec8 = nn.Sequential(nn.ConvTranspose2d(64, output_nc, 4, stride=2, padding=1), nn.Tanh())
def forward(self, x):
# Encoder
enc1 = self.enc1(x)
enc2 = self.enc2(enc1)
enc3 = self.enc3(enc2)
enc4 = self.enc4(enc3)
enc5 = self.enc5(enc4)
enc6 = self.enc6(enc5)
enc7 = self.enc7(enc6)
enc8 = self.enc8(enc7)
# Decoder
dec1 = self.dec1(enc8)
dec1 = torch.cat([dec1, enc7], dim=1)
dec2 = self.dec2(dec1)
dec2 = torch.cat([dec2, enc6], dim=1)
dec3 = self.dec3(dec2)
dec3 = torch.cat([dec3, enc5], dim=1)
dec4 = self.dec4(dec3)
dec4 = torch.cat([dec4, enc4], dim=1)
dec5 = self.dec5(dec4)
dec5 = torch.cat([dec5, enc3], dim=1)
dec6 = self.dec6(dec5)
dec6 = torch.cat([dec6, enc2], dim=1)
dec7 = self.dec7(dec6)
dec7 = torch.cat([dec7, enc1], dim=1)
dec8 = self.dec8(dec7)
return dec8
# Discriminator architecture
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(input_nc + output_nc, 64, 4, stride=2, padding=1), nn.LeakyReLU(0.2, True))
self.conv2 = nn.Sequential(nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, True))
self.conv3 = nn.Sequential(nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, True))
self.conv4 = nn.Sequential(nn.Conv2d(256, 512, 4, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, True))
self.conv5 = nn.Sequential(nn.Conv2d(512, 1, 4, padding=1), nn.Sigmoid())
def forward(self, x):
x = torch.cat([x[:, :input_nc, :, :], x[:, input_nc:, :, :]], dim=1)
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
return x
```
接下来,我们定义损失函数和优化器:
```python
# Loss function
criterion = nn.MSELoss()
# Optimizers
G_AB = Generator()
G_BA = Generator()
D_A = Discriminator()
D_B = Discriminator()
G_AB_optimizer = torch.optim.Adam(G_AB.parameters(), lr=learning_rate, betas=(0.5, 0.999))
G_BA_optimizer = torch.optim.Adam(G_BA.parameters(), lr=learning_rate, betas=(0.5, 0.999))
D_A_optimizer = torch.optim.Adam(D_A.parameters(), lr=learning_rate, betas=(0.5, 0.999))
D_B_optimizer = torch.optim.Adam(D_B.parameters(), lr=learning_rate, betas=(0.5, 0.999))
```
最后,我们定义训练循环:
```python
# Train loop
for epoch in range(epochs):
for i, (real_A, real_B) in enumerate(dataloader):
# Set model input
real_A = real_A.to(device)
real_B = real_B.to(device)
# Adversarial ground truths
valid = torch.ones((real_A.size(0), 1, image_size // 2 ** 4, image_size // 2 ** 4)).to(device)
fake = torch.zeros((real_A.size(0), 1, image_size // 2 ** 4, image_size // 2 ** 4)).to(device)
#######################
# Train generators
#######################
G_AB_optimizer.zero_grad()
G_BA_optimizer.zero_grad()
# Identity loss
idt_A = G_BA(real_A)
loss_idt_A = criterion(idt_A, real_A) * 0.5 * 5.0
idt_B = G_AB(real_B)
loss_idt_B = criterion(idt_B, real_B) * 0.5 * 5.0
# GAN loss
fake_B = G_AB(real_A)
loss_GAN_AB = criterion(D_B(torch.cat((real_A, fake_B), 1)), valid)
fake_A = G_BA(real_B)
loss_GAN_BA = criterion(D_A(torch.cat((real_B, fake_A), 1)), valid)
# Cycle loss
recov_A = G_BA(fake_B)
loss_cycle_A = criterion(recov_A, real_A) * 10.0
recov_B = G_AB(fake_A)
loss_cycle_B = criterion(recov_B, real_B) * 10.0
# Total loss
loss_G = loss_GAN_AB + loss_GAN_BA + loss_cycle_A + loss_cycle_B + loss_idt_A + loss_idt_B
loss_G.backward()
G_AB_optimizer.step()
G_BA_optimizer.step()
#######################
# Train discriminators
#######################
D_A_optimizer.zero_grad()
D_B_optimizer.zero_grad()
# Real loss
loss_real_A = criterion(D_A(torch.cat((real_A, real_B), 1)), valid)
loss_real_B = criterion(D_B(torch.cat((real_B, real_A), 1)), valid)
# Fake loss
loss_fake_A = criterion(D_A(torch.cat((real_A, fake_A.detach()), 1)), fake)
loss_fake_B = criterion(D_B(torch.cat((real_B, fake_B.detach()), 1)), fake)
# Total loss
loss_D_A = (loss_real_A + loss_fake_A) * 0.5
loss_D_B = (loss_real_B + loss_fake_B) * 0.5
loss_D = loss_D_A + loss_D_B
loss_D.backward()
D_A_optimizer.step()
D_B_optimizer.step()
# Print progress
print(f"[Epoch {epoch}/{epochs}] [Batch {i}/{len(dataloader)}] [D loss: {loss_D.item()}] [G loss: {loss_G.item()}]")
# Save checkpoints
torch.save(G_AB.state_dict(), "gen_AB.pth")
torch.save(G_BA.state_dict(), "gen_BA.pth")
torch.save(D_A.state_dict(), "disc_A.pth")
torch.save(D_B.state_dict(), "disc_B.pth")
```
这是 CycleGAN 的基本实现。当然,您还可以添加其他功能,如样式迁移,条件生成等,以满足您的需求。
阅读全文