reid任务中在resnet50backbone后加入pcb模块提升性能的具体代码
时间: 2024-03-11 14:50:22 浏览: 70
以下是在ResNet50 backbone后加入PCB模块的PyTorch代码示例:
```
import torch.nn as nn
import torchvision.models as models
class ResNet50_PCB(nn.Module):
def __init__(self, num_classes):
super(ResNet50_PCB, self).__init__()
self.backbone = models.resnet50(pretrained=True)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.num_classes = num_classes
self.parts = nn.ModuleList([nn.Sequential(
nn.Conv2d(2048, 256, kernel_size=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
) for i in range(6)])
self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Linear(512*6, num_classes)
def forward(self, x):
features = self.backbone.conv1(x)
features = self.backbone.bn1(features)
features = self.backbone.relu(features)
features = self.backbone.maxpool(features)
features = self.backbone.layer1(features)
features = self.backbone.layer2(features)
features = self.backbone.layer3(features)
features = self.backbone.layer4(features)
pcbs = []
for i in range(6):
part = self.parts[i](features)
part = self.avgpool(part)
pcbs.append(part)
global_feat = self.global_pool(features)
global_feat = global_feat.view(global_feat.shape[0], -1)
pcb_feat = torch.cat(pcbs, dim=1)
pcb_feat = pcb_feat.view(pcb_feat.shape[0], -1)
feat = torch.cat([global_feat, pcb_feat], dim=1)
logits = self.classifier(feat)
return logits
```
在这个模型中,我们通过`nn.ModuleList`定义了6个PCB模块,每个模块包含3个卷积层和1个自适应平均池化层。我们将每个PCB模块的输出通过平均池化层转换为256维向量,并将这6个向量拼接在一起,得到一个1536维的向量。同时,我们也计算出了整张图像的全局特征,通过自适应平均池化层和线性层将其转换为512维向量。最后,将全局特征和每个PCB模块的特征拼接在一起,通过线性层输出分类结果。
阅读全文