Python做EGARCH模型代码
时间: 2024-02-27 19:56:25 浏览: 255
时间序列GARCH模型
EGARCH模型是一种常用的时间序列模型,用于估计波动率。下面是Python实现EGARCH模型的代码示例:
```python
import pandas as pd
import numpy as np
import statsmodels.api as sm
# 读取数据
data = pd.read_csv('data.csv')
# 定义EGARCH模型
class EGARCH(sm.tsa.statespace.MLEModel):
def __init__(self, endog, order=(1,1)):
super(EGARCH, self).__init__(endog, k_states=1, k_posdef=1, initialization='stationary')
self._p = order[0]
self._q = order[1]
self._k = 1 + self._p + self._q
self.ssm['design'] = np.zeros((1, self._k))
self.ssm['design'][0,0] = 1
self.ssm['state_intercept'] = np.zeros((self._k,))
self.ssm['transition'] = np.eye(self._k)
self.ssm['selection'] = np.eye(self._k)
self.params = np.zeros((self._k,))
self.params[0] = np.log(np.var(endog))
def update(self, params, **kwargs):
self.params = params
self.variance = np.zeros_like(self.endog)
self.variance[0] = np.exp(params[0])
for t in range(1, len(self.endog)):
vol = np.sqrt(self.variance[t-1])
zt = (self.endog[t-1] - self.params[1])/vol
phi = np.sum(self.params[2:self._p+2]*self.variance[t-self._p-1:t-1])
gamma = np.sum(self.params[self._p+2:]*np.log(self.variance[t-self._q-1:t-1]))
self.variance[t] = np.exp(self.params[0] + self.params[1]*np.abs(zt)/vol + phi + gamma)
def loglike(self, params, **kwargs):
self.update(params, **kwargs)
return -np.sum(sm.tsa.arma.ARMA(self.endog, (self._p, self._q)).loglike(params[self._k:])) \
-np.sum(np.log(self.variance))
# 估计参数
model = EGARCH(data['returns'], order=(1,1))
result = model.fit()
# 输出结果
print(result.summary())
```
需要注意的是,EGARCH模型需要对数据进行预处理,将其转化为收益率序列。在代码中,我们假设数据中包含一个名为“returns”的列,用于存储收益率。另外,代码中的data.csv是一个包含收益率数据的CSV文件,需要根据实际情况进行修改。
阅读全文