C语言实现ASO优化BP算法
时间: 2023-06-25 19:06:04 浏览: 115
ASO优化算法是一种基于蚁群算法的优化算法,它可以用于解决多目标优化问题。BP神经网络算法可以用来进行分类、回归等任务。在使用BP算法进行ASO优化时,可以将多个目标转化为一个目标,然后使用BP神经网络进行训练和预测。
以下是一些实现ASO优化BP算法的C语言代码示例:
1. BP神经网络的实现
```c
//定义神经元结构体
typedef struct neuron {
double input; //输入
double output; //输出
double delta; //误差
double bias; //偏置
double *weights; //权重
} neuron_t;
//定义层结构体
typedef struct layer {
int num_neurons; //神经元数量
neuron_t *neurons; //神经元
} layer_t;
//定义神经网络结构体
typedef struct neural_network {
int num_layers; //层数
layer_t *layers; //层
} neural_network_t;
//初始化神经元
void init_neuron(neuron_t *neuron, int num_weights) {
neuron->input = 0.0;
neuron->output = 0.0;
neuron->delta = 0.0;
neuron->bias = (double)rand() / RAND_MAX; //随机初始化偏置
neuron->weights = (double *)malloc(num_weights * sizeof(double)); //动态分配权重数组
for (int i = 0; i < num_weights; i++) {
neuron->weights[i] = (double)rand() / RAND_MAX; //随机初始化权重
}
}
//初始化层
void init_layer(layer_t *layer, int num_neurons, int num_weights) {
layer->num_neurons = num_neurons;
layer->neurons = (neuron_t *)malloc(num_neurons * sizeof(neuron_t)); //动态分配神经元数组
for (int i = 0; i < num_neurons; i++) {
init_neuron(&layer->neurons[i], num_weights);
}
}
//初始化神经网络
void init_neural_network(neural_network_t *nn, int num_inputs, int num_outputs, int num_hidden_layers, int num_hidden_neurons) {
nn->num_layers = 2 + num_hidden_layers; //输入层、输出层和隐藏层
nn->layers = (layer_t *)malloc(nn->num_layers * sizeof(layer_t)); //动态分配层数组
//初始化输入层
init_layer(&nn->layers[0], num_inputs, 0);
//初始化隐藏层
for (int i = 0; i < num_hidden_layers; i++) {
if (i == 0) {
init_layer(&nn->layers[i+1], num_hidden_neurons, num_inputs);
} else {
init_layer(&nn->layers[i+1], num_hidden_neurons, num_hidden_neurons);
}
}
//初始化输出层
init_layer(&nn->layers[nn->num_layers-1], num_outputs, num_hidden_neurons);
}
//激活函数
double activation_function(double x) {
return 1.0 / (1.0 + exp(-x));
}
//前向传播
void feed_forward(neural_network_t *nn, double *inputs) {
//输入层
for (int i = 0; i < nn->layers[0].num_neurons; i++) {
nn->layers[0].neurons[i].output = inputs[i];
}
//隐藏层和输出层
for (int i = 1; i < nn->num_layers; i++) {
for (int j = 0; j < nn->layers[i].num_neurons; j++) {
double sum = 0.0;
for (int k = 0; k < nn->layers[i-1].num_neurons; k++) {
sum += nn->layers[i-1].neurons[k].output * nn->layers[i].neurons[j].weights[k];
}
sum += nn->layers[i].neurons[j].bias;
nn->layers[i].neurons[j].input = sum;
nn->layers[i].neurons[j].output = activation_function(sum);
}
}
}
//计算输出误差
void compute_output_error(neural_network_t *nn, double *targets) {
layer_t *output_layer = &nn->layers[nn->num_layers-1];
for (int i = 0; i < output_layer->num_neurons; i++) {
double output = output_layer->neurons[i].output;
double delta = targets[i] - output;
output_layer->neurons[i].delta = delta * output * (1.0 - output);
}
}
//计算隐藏层误差
void compute_hidden_error(layer_t *layer, layer_t *next_layer) {
for (int i = 0; i < layer->num_neurons; i++) {
double output = layer->neurons[i].output;
double sum = 0.0;
for (int j = 0; j < next_layer->num_neurons; j++) {
sum += next_layer->neurons[j].weights[i] * next_layer->neurons[j].delta;
}
layer->neurons[i].delta = output * (1.0 - output) * sum;
}
}
//反向传播
void backpropagation(neural_network_t *nn, double *targets, double learning_rate) {
//计算输出层误差
compute_output_error(nn, targets);
//计算隐藏层误差
for (int i = nn->num_layers-2; i > 0; i--) {
compute_hidden_error(&nn->layers[i], &nn->layers[i+1]);
}
//更新权重和偏置
for (int i = nn->num_layers-1; i > 0; i--) {
for (int j = 0; j < nn->layers[i].num_neurons; j++) {
neuron_t *neuron = &nn->layers[i].neurons[j];
for (int k = 0; k < nn->layers[i-1].num_neurons; k++) {
double delta_weight = learning_rate * neuron->delta * nn->layers[i-1].neurons[k].output;
neuron->weights[k] += delta_weight;
}
neuron->bias += learning_rate * neuron->delta;
}
}
}
//训练神经网络
void train_neural_network(neural_network_t *nn, double **inputs, double **targets, int num_examples, double learning_rate, int epochs) {
for (int epoch = 0; epoch < epochs; epoch++) {
double error = 0.0;
for (int example = 0; example < num_examples; example++) {
feed_forward(nn, inputs[example]);
compute_output_error(nn, targets[example]);
error += 0.5 * pow(targets[example][0] - nn->layers[nn->num_layers-1].neurons[0].output, 2);
backpropagation(nn, targets[example], learning_rate);
}
printf("Epoch %d: error = %lf\n", epoch, error);
}
}
//使用神经网络进行预测
double predict(neural_network_t *nn, double *inputs) {
feed_forward(nn, inputs);
return nn->layers[nn->num_layers-1].neurons[0].output;
}
```
2. ASO优化算法的实现
```c
//定义蚂蚁结构体
typedef struct ant {
double *position; //位置
double *velocity; //速度
double *best_position; //最佳位置
double best_fitness; //最佳适应度
} ant_t;
//初始化蚂蚁
void init_ant(ant_t *ant, int num_dimensions) {
ant->position = (double *)malloc(num_dimensions * sizeof(double)); //动态分配位置数组
ant->velocity = (double *)malloc(num_dimensions * sizeof(double)); //动态分配速度数组
ant->best_position = (double *)malloc(num_dimensions * sizeof(double)); //动态分配最佳位置数组
for (int i = 0; i < num_dimensions; i++) {
ant->position[i] = (double)rand() / RAND_MAX; //随机初始化位置
ant->velocity[i] = 0.0; //初始化速度为0
ant->best_position[i] = ant->position[i]; //最佳位置初始化为当前位置
}
ant->best_fitness = DBL_MAX; //最佳适应度初始化为最大值
}
//计算适应度
double fitness_function(ant_t *ant, neural_network_t *nn, double **inputs, double *targets, int num_examples) {
double error = 0.0;
for (int example = 0; example < num_examples; example++) {
double output = predict(nn, inputs[example]);
error += 0.5 * pow(targets[example] - output, 2);
}
return error;
}
//更新速度和位置
void update_velocity_and_position(ant_t *ant, ant_t *global_best_ant, double inertia_weight, double cognitive_weight, double social_weight) {
for (int i = 0; i < num_dimensions; i++) {
double r1 = (double)rand() / RAND_MAX; //随机数1
double r2 = (double)rand() / RAND_MAX; //随机数2
ant->velocity[i] = inertia_weight * ant->velocity[i] + cognitive_weight * r1 * (ant->best_position[i] - ant->position[i]) + social_weight * r2 * (global_best_ant->best_position[i] - ant->position[i]);
ant->position[i] += ant->velocity[i];
if (ant->position[i] < 0.0) {
ant->position[i] = 0.0;
} else if (ant->position[i] > 1.0) {
ant->position[i] = 1.0;
}
}
}
//ASO优化算法
void ASO(neural_network_t *nn, double **inputs, double *targets, int num_examples, int num_ants, int num_iterations, double inertia_weight, double cognitive_weight, double social_weight) {
//初始化蚂蚁
ant_t *ants = (ant_t *)malloc(num_ants * sizeof(ant_t));
for (int i = 0; i < num_ants; i++) {
init_ant(&ants[i], num_dimensions);
}
//计算适应度
double *fitness = (double *)malloc(num_ants * sizeof(double));
for (int i = 0; i < num_ants; i++) {
fitness[i] = fitness_function(&ants[i], nn, inputs, targets, num_examples);
if (fitness[i] < global_best_fitness) {
global_best_fitness = fitness[i];
memcpy(global_best_position, ants[i].position, num_dimensions * sizeof(double));
}
}
//ASO优化循环
for (int iteration = 0; iteration < num_iterations; iteration++) {
for (int i = 0; i < num_ants; i++) {
update_velocity_and_position(&ants[i], &global_best_ant, inertia_weight, cognitive_weight, social_weight);
double fitness_new = fitness_function(&ants[i], nn, inputs, targets, num_examples);
if (fitness_new < fitness[i]) {
fitness[i] = fitness_new;
memcpy(ants[i].best_position, ants[i].position, num_dimensions * sizeof(double));
if (fitness_new < global_best_fitness) {
global_best_fitness = fitness_new;
memcpy(global_best_position, ants[i].position, num_dimensions * sizeof(double));
}
}
}
}
}
```
将BP神经网络和ASO优化算法结合起来,可以实现ASO优化BP算法。
```c
int main() {
srand(time(NULL));
//输入数据
double inputs[NUM_EXAMPLES][NUM_INPUTS] = {
{0.0, 0.0},
{0.0, 1.0},
{1.0, 0.0},
{1.0, 1.0}
};
//目标数据
double targets[NUM_EXAMPLES] = {0.0, 1.0, 1.0, 0.0};
//初始化神经网络
neural_network_t nn;
init_neural_network(&nn, NUM_INPUTS, 1, 1, 4);
//训练神经网络
train_neural_network(&nn, inputs, targets, NUM_EXAMPLES, LEARNING_RATE, EPOCHS);
//ASO优化BP算法
ASO(&nn, inputs, targets, NUM_EXAMPLES, NUM_ANTS, NUM_ITERATIONS, INERTIA_WEIGHT, COGNITIVE_WEIGHT, SOCIAL_WEIGHT);
//使用神经网络进行预测
for (int i = 0; i < NUM_EXAMPLES; i++) {
double output = predict(&nn, inputs[i]);
printf("Input: %lf %lf, Target: %lf, Output: %lf\n", inputs[i][0], inputs[i][1], targets[i], output);
}
return 0;
}
```
阅读全文