opencv c++ yolo5
时间: 2023-09-17 19:03:50 浏览: 122
OpenCV是一个开源计算机视觉库,用于图像处理、计算机视觉和机器学习方面的应用开发。而YOLO(You Only Look Once)是一种基于深度学习的目标检测算法。YOLO5是YOLO系列中的第五个版本,相比前几个版本,它在速度和准确性上有了一些改进。
首先,YOLO5采用了更深的Darknet模型作为基础网络,这个网络在视觉特征提取方面更强大。它能够更好地捕捉到目标的各种视觉特征,提高检测的准确性。
其次,YOLO5引入了一种自适应模型缩放技术。这意味着YOLO5可以根据目标的大小和位置动态地调整其检测模型的输入尺寸。这样一来,无论是小物体还是大物体,它都能够在不同的尺度上进行有效的检测。
此外,YOLO5还引入了一种新的训练策略,称为Self-training。通过利用无监督的标记数据进行模型训练,可以提高模型的泛化能力和检测准确性。这种策略的引入使得YOLO5在数据稀缺的情况下仍能够取得很好的性能。
总之,OpenCV C中的YOLO5是一个更强大和高效的目标检测算法。它在目标检测的准确性、速度和鲁棒性方面都有了一定的提升。因此,使用OpenCV C和YOLO5可以实现更精确和高效的目标检测应用。
相关问题
opencv+c++YOLO
YOLO (You Only Look Once) is an object detection algorithm that uses deep neural networks to detect objects in real-time. OpenCV is a popular computer vision library that provides various tools and functions for image processing and computer vision tasks.
To use YOLO with OpenCV in C++, you need to follow these steps:
1. Download the YOLOv3 weights and configuration files from the official website.
2. Load the model using OpenCV's dnn module.
3. Read the input image and preprocess it.
4. Pass the image through the model to get the output.
5. Postprocess the output to get the object detection results.
6. Draw bounding boxes around the detected objects and display the output image.
Here's a sample code that demonstrates how to use YOLO with OpenCV in C++:
```
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
// Load YOLOv3 model
String modelWeights = "yolov3.weights";
String modelConfiguration = "yolov3.cfg";
dnn::Net net = dnn::readNetFromDarknet(modelConfiguration, modelWeights);
// Read input image
Mat image = imread("input.jpg");
// Preprocess input image
Mat blob = dnn::blobFromImage(image, 1/255.0, Size(416, 416), Scalar(0,0,0), true, false);
// Set input for the network
net.setInput(blob);
// Get output from the network
vector<Mat> outs;
net.forward(outs, net.getUnconnectedOutLayersNames());
// Postprocess the output
float confThreshold = 0.5;
vector<int> classIds;
vector<float> confidences;
vector<Rect> boxes;
for (size_t i = 0; i < outs.size(); ++i)
{
// Extract information from the output
Mat output = outs[i];
for (int j = 0; j < output.rows; ++j)
{
Mat scores = output.row(j).colRange(5, output.cols);
Point classId;
double confidence;
minMaxLoc(scores, 0, &confidence, 0, &classId);
if (confidence > confThreshold)
{
// Get bounding box coordinates
int centerX = static_cast<int>(output.at<float>(j, 0) * image.cols);
int centerY = static_cast<int>(output.at<float>(j, 1) * image.rows);
int width = static_cast<int>(output.at<float>(j, 2) * image.cols);
int height = static_cast<int>(output.at<float>(j, 3) * image.rows);
int left = centerX - width / 2;
int top = centerY - height / 2;
// Save detection results
classIds.push_back(classId.x);
confidences.push_back(static_cast<float>(confidence));
boxes.push_back(Rect(left, top, width, height));
}
}
}
// Draw bounding boxes around the detected objects
vector<String> classNames = {"person", "car", "bus", "truck"};
vector<Scalar> colors = {Scalar(0, 0, 255), Scalar(255, 0, 0), Scalar(0, 255, 0), Scalar(255, 255, 0)};
for (size_t i = 0; i < boxes.size(); ++i)
{
rectangle(image, boxes[i], colors[classIds[i]], 2);
String label = format("%.2f", confidences[i]);
label = classNames[classIds[i]] + ":" + label;
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
rectangle(image, Point(boxes[i].x, boxes[i].y - labelSize.height - baseLine), Point(boxes[i].x + labelSize.width, boxes[i].y), colors[classIds[i]], FILLED);
putText(image, label, Point(boxes[i].x, boxes[i].y - baseLine), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255,255,255));
}
// Display the output image
imshow("YOLO Object Detection", image);
waitKey(0);
return 0;
}
```
Note that this sample code is for YOLOv3 and may need to be modified for other versions of YOLO. Also, make sure to download the correct weights and configuration files for the version you are using.
OpenCV:YOLO目标检测 c++
YOLO(You Only Look Once)是一种流行的目标检测算法,它能够快速准确地在图像中识别和定位多个对象。YOLO算法将目标检测任务视为一个回归问题,通过一个单一的神经网络直接从图像像素到类别概率和边界框坐标的映射。
在C++中使用OpenCV实现YOLO目标检测通常涉及以下步骤:
1. 加载YOLO模型:首先需要从预训练的YOLO模型文件中加载网络,这些文件包括配置文件(.cfg),预训练权重文件(.weights)和类别名称文件(.names)。
2. 图像预处理:在进行目标检测之前,需要对输入图像进行预处理,比如缩放到网络输入尺寸,归一化等。
3. 进行目标检测:将预处理后的图像输入到YOLO网络中,网络会输出包含多个边界框和对应置信度的预测结果。
4. 筛选和输出结果:根据阈值筛选出置信度高的边界框,并将它们转换为原始图像尺寸上的位置坐标。输出这些边界框和对应的类别标签。
在OpenCV中,YOLO模型通常使用DNN模块来加载和运行。可以使用`cv::dnn::readNetFromDarknet`函数来加载配置和权重文件,并使用`cv::dnn::Net::forward`函数来执行前向传播获取检测结果。
阅读全文