#include<stdio.h> #include<stdlib.h> typedef struct BiTNode { int key; struct BiTNode *lchild, *rchild; } BiTNode, *BiTree; int SearchBST(BiTree T, int key, BiTree f, BiTree &p) { if (!T) { p = f; return 0; } else if (key == T->key) { p = T; return 1; } else if (key < T->key) SearchBST(T->lchild, key, T, p); else SearchBST(T->rchild, key, T, p); } int InsertBST(BiTree &T, int key) { if (!T) { T = (BiTree)malloc(sizeof(BiTNode)); T->key = key; T->lchild = (T)->rchild = NULL; } if (key == T->key) return 0; if (key > T->key) InsertBST(T->rchild, key); else InsertBST(T->lchild, key); } void InorderTraverse(BiTree T) { if (T){ InorderTraverse(T->lchild); printf("%d ", T->key); InorderTraverse(T->rchild); } } void Delete(BiTree &p) { BiTree q, s; if (!p->lchild && !p->rchild) p = NULL; else if (!p->lchild) { q = p; p = p->rchild; free(q); } else if (!p->rchild) { q = p; p = p->lchild; free(q); } else{ q = p; s = p->lchild; while (s->rchild) { q = s; s = s->rchild; } p->key = s->key; if (q != p) q->rchild = s->lchild; else q->lchild = s->lchild; free(s); } } int DeleteBST(BiTree &T, int key) { if (!T) return 0; else{ if (key == T->key) Delete(T); else if (key < T->key) DeleteBST(T->lchild, key); else DeleteBST(T->rchild, key); } } int main() { int e, n; BiTree T = NULL, f = 0, p; printf("输入长度:"); scanf("%d", &n); printf("输入元素:"); while (n--){ scanf("%d", &e); InsertBST(T, e); } printf("中序遍历:"); InorderTraverse(T); printf("\n"); while (1) { printf("输入要查找元素:"); scanf("%d", &e); if (SearchBST(T, e, f, p)) printf("找到了\n"); else printf("没找到\n"); printf("输入要插入元素:"); scanf("%d", &e); InsertBST(T, e); printf("中序遍历:"); InorderTraverse(T); printf("\n"); printf("输入要删除元素:"); scanf("%d", &e); DeleteBST(T, e); printf("中序遍历:"); InorderTraverse(T); printf("\n"); } }请帮我注视本段代码

时间: 2024-03-10 21:44:56 浏览: 18
好的,以下是本段代码的注释: ```c #include<stdio.h> #include<stdlib.h> //定义二叉搜索树的节点结构体 typedef struct BiTNode { int key; //节点值 struct BiTNode *lchild, *rchild; //左右子节点 } BiTNode, *BiTree; //在二叉搜索树T中查找值为key的节点,f为T的父节点,p为查找结果 int SearchBST(BiTree T, int key, BiTree f, BiTree &p) { if (!T) { p = f; return 0; //未找到 } else if (key == T->key) { p = T; return 1; //找到 } else if (key < T->key) SearchBST(T->lchild, key, T, p); else SearchBST(T->rchild, key, T, p); } //在二叉搜索树T中插入值为key的节点 int InsertBST(BiTree &T, int key) { if (!T) { T = (BiTree)malloc(sizeof(BiTNode)); //申请新节点 T->key = key; T->lchild = (T)->rchild = NULL; //左右子节点置为空 } if (key == T->key) return 0; //已有相同节点 if (key > T->key) InsertBST(T->rchild, key); //插入右子树 else InsertBST(T->lchild, key); //插入左子树 } //中序遍历二叉搜索树 void InorderTraverse(BiTree T) { if (T){ InorderTraverse(T->lchild); printf("%d ", T->key); InorderTraverse(T->rchild); } } //删除指定节点 void Delete(BiTree &p) { BiTree q, s; if (!p->lchild && !p->rchild) p = NULL; else if (!p->lchild) { q = p; p = p->rchild; free(q); } else if (!p->rchild) { q = p; p = p->lchild; free(q); } else { q = p; s = p->lchild; while (s->rchild) { q = s; s = s->rchild; } p->key = s->key; if (q != p) q->rchild = s->lchild; else q->lchild = s->lchild; free(s); } } //在二叉搜索树T中删除值为key的节点 int DeleteBST(BiTree &T, int key) { if (!T) return 0; //未找到 else { if (key == T->key) Delete(T); //找到并删除 else if (key < T->key) DeleteBST(T->lchild, key); //在左子树中递归查找和删除 else DeleteBST(T->rchild, key); //在右子树中递归查找和删除 } } //主函数 int main() { int e, n; BiTree T = NULL, f = 0, p; //T为二叉搜索树,f为T的父节点,p为查找结果 printf("输入长度:"); scanf("%d", &n); printf("输入元素:"); while (n--) { scanf("%d", &e); InsertBST(T, e); //插入元素建树 } printf("中序遍历:"); InorderTraverse(T); //中序遍历 printf("\n"); while (1) { printf("输入要查找元素:"); scanf("%d", &e); if (SearchBST(T, e, f, p)) printf("找到了\n"); else printf("没找到\n"); printf("输入要插入元素:"); scanf("%d", &e); InsertBST(T, e); //插入元素 printf("中序遍历:"); InorderTraverse(T); //中序遍历 printf("\n"); printf("输入要删除元素:"); scanf("%d", &e); DeleteBST(T, e); //删除元素 printf("中序遍历:"); InorderTraverse(T); //中序遍历 printf("\n"); } } ```

相关推荐

#define MAXSIZE 100 typedef int KeyType; /*关键字类型*/ typedef struct { KeyType key; /*InfoType otherinfo;*/ }RedType; /*记录类型*/ typedef struct BiTNode { RedType data; struct BiTNode *lchild,*rchild; }BiTNode, *BiTree; /*动态查找表的二叉链表存储表示*/#include <stdio.h> #include <stdlib.h> #include <string.h> #include "search.h" BiTree Search_BST(BiTree T, KeyType key, BiTNode **parent) {/*在二叉排序树T上查找其关键字等于key的记录结点。若找到返回该结点指针,parent指向其双亲;否则返回空指针,parent指向访问路径上最后一个结点。*/ // 请在这里补充代码,完成本关任务 /********** Begin *********/ /********** End **********/ } void Insert_BST(BiTree *T, RedType r)/*若二叉排序树T中没有关键字为r.key的记录,则插入*/ { BiTNode *p,*q,*parent; parent=NULL; p=Search_BST(*T,r.key,&parent); /*查找*/ if(p) printf("BST中有结点r,无需插入\n"); else { p=parent; q=(BiTNode *)malloc(sizeof(BiTNode)); q->data=r; q->lchild=q->rchild=NULL; if(*T==NULL) *T=q; /*若T为空,则q为新的根*/ else if(r.keydata.key) p->lchild=q; else p->rchild=q; } } BiTree Create_BST( ) /*二叉排序树的构造*/ {/*输入若干记录的关键字(以-1标志结束),生成一棵BST,采用二叉链表存储,返回其根指针T*/ BiTree T; RedType r; T=NULL; /*建空树*/ scanf("%d",&r.key); while(r.key!=-1) { Insert_BST(&T, r); scanf("%d",&r.key); } return T; } void PreOrder(BiTree bt) /*先序遍历*/ { if(bt) { printf("%d ",bt->data.key); PreOrder(bt->lchild); PreOrder(bt->rchild); } } void InOrder(BiTree bt) /*中序遍历*/ { if(bt) { InOrder(bt->lchild); printf("%d ",bt->data.key); InOrder(bt->rchild); } 补充代码

#define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> #include<stdlib.h> typedef struct Node { char data; struct Node *LChild; struct Node *RChild; }BitNode,*BitTree; BitTree CreatBiTree(); bool PreOrder(BitTree bt); bool InOrder(BitTree bt); bool PostOrder(BitTree bt); int PostTreeDepth(BitTree bt); int main() { BitTree bt; int i; bt=CreatBiTree(); printf("请输入你要遍历的方式:"); scanf("%d\n",&i); if(i==-1) { PreOrder(bt); } else if(i==0) { PreOrder(bt); } else if(i==1) { InOrder(bt); } else { printf("无效方式!!\n"); } printf("此二叉树的深度是:"); PostTreeDepth(bt); return 0; } BitTree CreatBiTree() // 创建二叉树 { char data; BitTree bt; scanf("%c",&data); // 输入数据 if(data == '#')// 输入# 代表此节点下子树不存数据,也就是不继续递归创建 { return NULL; } else{ bt = (BitTree)malloc(sizeof(BitNode)); // 分配内存空间 bt->data = data; // 把当前输入的数据存入当前节点指针的数据域中 printf("请输入%s的左子树: ",data); bt->LChild = CreatBiTree(); // 开始递归创建左子树 printf("请输入%s的右子树: ",data); bt->RChild = CreatBiTree(); // 开始到上一级节点的右边递归创建左右子树 return bt; // 返回根节点 } } bool PreOrder(BitTree bt)//先序 { if(bt) { printf("%s\n",bt->data); PreOrder(bt->LChild); PreOrder(bt->RChild); } return true; } bool InOrder(BitTree bt)//中序 { if(bt) { InOrder(bt->LChild); printf("%s\n",bt->data); InOrder(bt->RChild); } return true; } bool PostOrder(BitTree bt)//后序 { if(bt) { PostOrder(bt->LChild); PostOrder(bt->RChild); printf("%s\n",bt->data); } return true; } int PostTreeDepth(BitTree bt)//深度 { int m,n; if(bt==NULL) return 0; else { m=PostTreeDepth(bt->LChild); n=PostTreeDepth(bt->RChild); if(m>n) return (m+1); else return (n+1); } }这段代码有什么问题

最新推荐

recommend-type

1235012013杨铭.zip

1235012013杨铭.zip
recommend-type

vue项目实战Vue实战项目篇源码.zip

vue项目实战Vue实战项目篇源码.zip Vue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zipVue实战项目篇源码.zi
recommend-type

NX二次开发uc4400 函数介绍

NX二次开发uc4400 函数介绍,Ufun提供了一系列丰富的 API 函数,可以帮助用户实现自动化、定制化和扩展 NX 软件的功能。无论您是从事机械设计、制造、模具设计、逆向工程、CAE 分析等领域的专业人士,还是希望提高工作效率的普通用户,NX 二次开发 Ufun 都可以帮助您实现更高效的工作流程。函数覆盖了 NX 软件的各个方面,包括但不限于建模、装配、制图、编程、仿真等。这些 API 函数可以帮助用户轻松地实现自动化、定制化和扩展 NX 软件的功能。例如,用户可以通过 Ufun 编写脚本,自动化完成重复性的设计任务,提高设计效率;或者开发定制化的功能,满足特定的业务需求。语法简单易懂,易于学习和使用。用户可以快速上手并开发出符合自己需求的 NX 功能。本资源内容 提供了丰富的中英文帮助文档,可以帮助用户快速了解和使用 Ufun 的功能。用户可以通过资源中的提示,学习如何使用 Ufun 的 API 函数,以及如何实现特定的功能。
recommend-type

基于Java的二手书交易微信小程序源码.zip

提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依