[runs 36-527] dcp does not exist: h:/vivado2021/vivado/2021.1/bin/.xil/vivad
时间: 2024-01-07 08:01:36 浏览: 812
这个错误信息表示在指定的路径"h:/vivado2021/vivado/2021.1/bin/.xil/vivad"中找不到dcp文件。dcp文件是Vivado工具生成的存储设计实例的文件,用于后续的综合、布局和实现等步骤。
出现这个错误的原因可能有以下几种情况:
1. 指定的路径不存在:请确认路径"h:/vivado2021/vivado/2021.1/bin/.xil/vivad"是否正确,并且确保该路径下的文件存在。
2. Vivado版本不匹配:该错误信息可能是因为路径中指定的版本与当前使用的Vivado版本不匹配。请检查所使用的Vivado版本,并确认路径中的版本是否正确。
3. 文件被删除或移动:如果该路径下的dcp文件被删除或移动到了其他位置,那么会导致出现该错误。请检查文件是否存在,并将其放置到正确的路径中。
如果以上方法都无法解决该问题,建议重新生成设计实例文件并检查路径设置是否正确。另外,您也可以参考Vivado的官方文档或咨询Xilinx的技术支持,以获取更详细的帮助和解决方案。
相关问题
server: port: 8080 spring: datasource: username: root password: 123456 driver-class-name: com.mysql.cj.jdbc.Driver url: jdbc:mysql://localhost:3306/db?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8 druid: initial-size: 5 min-idle: 5 max-active: 20 max-wait: 60000 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 100000 max-evictable-idle-time-millis: 300000 validation-query: SELECT 1 FROM DUAL test-while-idle: true test-on-borrow: false test-on-return: false pool-prepared-statements: true aop-patterns: com.example.demo.* stat-view-servlet: enabled: true login-username: root login-password: 123456 web-stat-filter: enabled: true url-pattern: /* exclusions: '*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*' filters: stat,wall filter: stat: slow-sql-millis: 1000 log-slow-sql: true enabled: true wall: enabled: true config: drop-table-allow: false重写yml格式
我可以帮你重新格式化这段YAML格式的文本,如下所示:
```yaml
server:
port: 8080
spring:
datasource:
username: root
password: 123456
driver-class-name: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://localhost:3306/db?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8
druid:
initial-size: 5
min-idle: 5
max-active: 20
max-wait: 60000
time-between-eviction-runs-millis: 60000
min-evictable-idle-time-millis: 100000
max-evictable-idle-time-millis: 300000
validation-query: SELECT 1 FROM DUAL
test-while-idle: true
test-on-borrow: false
test-on-return: false
pool-prepared-statements: true
aop-patterns: com.example.demo.*
stat-view-servlet:
enabled: true
login-username: root
login-password: 123456
web-stat-filter:
enabled: true
url-pattern: /*
exclusions: '*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*'
filters: stat,wall
filter:
stat:
slow-sql-millis: 1000
log-slow-sql: true
enabled: true
wall:
enabled: true
config:
drop-table-allow: false
```
希望这样的格式更易读和明了。如果你还有任何其他问题,请随时提问!
YOLOV8基于Opset-12导出的ONNX模型,使用TensorRT-8.2.1.8转换模型时,提示以下错误,请问如何修复这个错误?: [06/01/2023-17:17:23] [I] TensorRT version: 8.2.1 [06/01/2023-17:17:23] [I] [TRT] [MemUsageChange] Init CUDA: CPU +323, GPU +0, now: CPU 335, GPU 1027 (MiB) [06/01/2023-17:17:24] [I] [TRT] [MemUsageSnapshot] Begin constructing builder kernel library: CPU 335 MiB, GPU 1027 MiB [06/01/2023-17:17:24] [I] [TRT] [MemUsageSnapshot] End constructing builder kernel library: CPU 470 MiB, GPU 1058 MiB [06/01/2023-17:17:24] [I] Start parsing network model [06/01/2023-17:17:24] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-17:17:24] [I] [TRT] Input filename: /opt/projects/ultralytics/runs/detect/train/weights/best.onnx [06/01/2023-17:17:24] [I] [TRT] ONNX IR version: 0.0.8 [06/01/2023-17:17:24] [I] [TRT] Opset version: 17 [06/01/2023-17:17:24] [I] [TRT] Producer name: pytorch [06/01/2023-17:17:24] [I] [TRT] Producer version: 2.0.0 [06/01/2023-17:17:24] [I] [TRT] Domain: [06/01/2023-17:17:24] [I] [TRT] Model version: 0 [06/01/2023-17:17:24] [I] [TRT] Doc string: [06/01/2023-17:17:24] [I] [TRT] ---------------------------------------------------------------- [06/01/2023-17:17:24] [W] [TRT] onnx2trt_utils.cpp:366: Your ONNX model has been generated with INT64 weights, while TensorRT does not natively support INT64. Attempting to cast down to INT32. [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:773: While parsing node number 267 [Range -> "/model.28/Range_output_0"]: [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:774: --- Begin node --- [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:775: input: "/model.28/Constant_9_output_0" input: "/model.28/Cast_output_0" input: "/model.28/Constant_10_output_0" output: "/model.28/Range_output_0" name: "/model.28/Range" op_type: "Range" [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:776: --- End node --- [06/01/2023-17:17:24] [E] [TRT] ModelImporter.cpp:779: ERROR: builtin_op_importers.cpp:3352 In function importRange: [8] Assertion failed: inputs.at(0).isInt32() && "For range operator with dynamic inputs, this version of TensorRT only supports INT32!" [06/01/2023-17:17:24] [E] Failed to parse onnx file [06/01/2023-17:17:24] [I] Finish parsing network model [06/01/2023-17:17:24] [E] Parsing model failed [06/01/2023-17:17:24] [E] Failed to create engine from model. [06/01/2023-17:17:24] [E] Engine set up failed
这个错误提示是因为TensorRT不支持ONNX模型中的INT64类型权重。您需要将ONNX模型中的INT64类型权重转换为INT32类型,以便TensorRT能够正确地解析模型。可以使用ONNX官方提供的`onnx-tensorrt`工具来转换模型,该工具支持将INT64类型权重转换为INT32类型。具体步骤如下:
1. 安装`onnx-tensorrt`工具,可以使用`pip install onnx-tensorrt`命令来安装。
2. 使用`onnx-tensorrt`工具将ONNX模型转换为TensorRT引擎。具体命令如下:
```
import onnx
import onnx_tensorrt.backend as backend
from onnx_tensorrt.backend import prepare
model = onnx.load('/path/to/onnx/model')
engine = backend.prepare(model, device='CUDA:0', max_batch_size=max_batch_size)
```
其中,`/path/to/onnx/model`是您的ONNX模型文件路径,`max_batch_size`是您想要设置的最大批处理大小。这个命令会将ONNX模型转换为TensorRT引擎,并返回一个TensorRT引擎对象。
注意,在使用`onnx-tensorrt`工具时,需要确保您的ONNX模型中不包含任何INT64类型的权重。如果您的模型中包含INT64类型权重,您需要手动将其转换为INT32类型,或者使用其他工具将其转换为INT32类型。
阅读全文