find opencv
时间: 2023-12-22 21:28:47 浏览: 159
你可以使用以下方法来查找OpenCV库:
1. 使用OpenCV的路径填充OpenCV_DIR变量:
```shell
export OpenCV_DIR=<path_of_opencv>
```
2. 在CMakeLists.txt文件中添加find_package命令来查找OpenCV:
```cmake
find_package(OpenCV REQUIRED)
```
如果你遇到了CMake Error,可能是因为找不到FindOpenCV.cmake模块或OpenCV的CMake配置文件。你可以尝试以下解决办法:
1. 调整CMAKE_MODULE_PATH以找到FindOpenCV.cmake模块:
```cmake
set(CMAKE_MODULE_PATH <path_to_FindOpenCV.cmake>)
```
2. 设置OpenCV_DIR为包含OpenCV的CMake配置文件的目录:
```cmake
set(OpenCV_DIR <path_to_OpenCVConfig.cmake>)
```
请注意,<path_of_opencv>和<path_to_FindOpenCV.cmake>或<path_to_OpenCVConfig.cmake>应该替换为实际的路径。
相关问题
-- Could NOT find OpenCV (missing: OpenCV_DIR) -- Could not find the required component 'OpenCV'. The following CMake error indicates that you either need to install the package with the same name or change your environment so that it can be found. CMake
这是由于在编译时找不到 OpenCV 库的路径。您需要安装 OpenCV 库或告诉 CMake OpenCV 库的路径。如果您已经安装了 OpenCV 库,可以尝试以下解决方案:
1. 确认您已经正确地安装了 OpenCV 库,并且已经设置了环境变量。
2. 在 CMakeLists.txt 文件中添加以下代码来指定 OpenCV 库的路径:
```
set(OpenCV_DIR /path/to/opencv)
find_package(OpenCV REQUIRED)
```
其中 `/path/to/opencv` 是您安装 OpenCV 库的路径。
3. 如果您使用的是 catkin 工作空间,请在 package.xml 文件中添加以下依赖项:
```
<build_depend>opencv</build_depend>
<run_depend>opencv</run_depend>
```
并在 CMakeLists.txt 文件中添加以下代码:
```
find_package(catkin REQUIRED COMPONENTS opencv)
```
然后使用 `catkin_make` 重新编译您的工作空间即可。
opencv find_shape_model
The `find_shape_model` function in OpenCV is used for finding a shape model from a set of training images. It is part of the Shape Matching module in OpenCV, which provides tools for matching shapes based on their contour and other features.
The `find_shape_model` function takes as input a set of training images, which are typically binary images with the object of interest represented as a white shape on a black background. The function then computes a shape model based on the contours of the objects in the training images.
The shape model can be used for shape matching, which involves finding the best match between a given image and the shape model. This can be useful for object recognition and tracking.
To use the `find_shape_model` function, you first need to create a ShapeContextDistanceExtractor object, which defines the distance metric used for shape matching. You then call the `find_shape_model` function, passing in the training images and the ShapeContextDistanceExtractor object.
Here's an example of how to use the `find_shape_model` function:
```
import cv2
# Load training images
img1 = cv2.imread("train1.png", cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread("train2.png", cv2.IMREAD_GRAYSCALE)
img3 = cv2.imread("train3.png", cv2.IMREAD_GRAYSCALE)
# Create ShapeContextDistanceExtractor object
sc_extractor = cv2.createShapeContextDistanceExtractor()
# Find shape model from training images
shape_model = cv2.findShapeModel([img1, img2, img3], sc_extractor)
```
In this example, we load three training images and create a ShapeContextDistanceExtractor object. We then call the `findShapeModel` function, passing in the three training images and the ShapeContextDistanceExtractor object. The function returns a shape model, which can be used for shape matching.
阅读全文