def Calcullate_Datarate(self,SINRlist,Usersnumber,B): # calculate data rate for all users(计算所有用户的数据速率) for j in range(Usersnumber): if SINRlist.iloc[0,j] <=0: print(SINRlist) warnings.warn('SINR wrong') # A data type error may occur when the data rate is too small, thus we ste up this alarm(数据率过小可能会出现数据类型错误,所以我们设置这个告警) self.Daterate.iloc[0,j] = B*math.log((1+SINRlist.iloc[0,j]),2) SumDataRate = sum(self.Daterate.iloc[0,:]) Worst_user_rate = min(self.Daterate.iloc[0,:]) return self.Daterate,SumDataRate,Worst_user_rate解释这段代码
时间: 2024-04-28 20:27:06 浏览: 80
这段代码是一个用于计算无线通信系统中所有用户数据速率的函数。函数的输入包括一个SINRlist(信噪比列表),一个用户数量(Usersnumber)和一个带宽(B);输出包括一个数据速率列表(Daterate)、所有用户的数据速率之和(SumDataRate)和最差用户的数据速率(Worst_user_rate)。
在函数内部,它首先遍历所有用户,计算每个用户的数据速率,并将数据速率值存储到数据速率列表中。如果某个用户的信噪比小于或等于0,则会输出SINRlist并引发警告。接着,函数计算所有用户数据速率的和以及最差用户的数据速率。最后,函数返回数据速率列表、所有用户数据速率之和和最差用户的数据速率。
相关问题
class BCPLoss(torch.nn.Module): def __init__(self, eps=1e-6): super(BCPLoss, self).__init__() self.eps = eps def forward(self, x, y): # Calculate BCP feature bcp_x = self._bcp(x) bcp_y = self._bcp(y) # Calculate BCP Loss loss = torch.mean((bcp_x - bcp_y) ** 2) loss = torch.clamp(loss, min=self.eps) return loss def _bcp(self, x): # Calculate bright channel feature bcp = torch.mean(torch.abs(x), dim=(2, 3), keepdim=True) bcp = F.relu(bcp) return bcp
这段代码是用来实现 Bright Channel Prior Loss (BCP Loss) 的,是一种图像去雾的损失函数。该损失函数的计算过程分为两步,第一步是计算输入图片 x 和目标图片 y 的亮度通道,即 Bright Channel Feature。第二步是计算两者之间的差异,即 BCP Loss。其中,eps 表示一个极小的常数,用来防止除数为0的情况发生。
怎么用python将下面代码中的dw,db改为私有属性import numpy as npimport matplotlib.pyplot as pltfrom HelperClass.DataReader_1_0 import *file_name = "../../data/ch04.npz"class NeuralNet_0_1(object): def __init__(self, eta): self.eta = eta self.w = 0 self.b = 0 def __forward(self, x): z = x * self.w + self.b return z def __backward(self, x,y,z): dz = z - y db = dz dw = x * dz return dw, db def __update(self, dw, db): self.w = self.w - self.eta * dw self.b = self.b - self.eta * db def train(self, dataReader): for i in range(dataReader.num_train): # get x and y value for one sample x,y = dataReader.GetSingleTrainSample(i) # get z from x,y z = self.__forward(x) # calculate gradient of w and b dw, db = self.__backward(x, y, z) # update w,b self.__update(dw, db) # end for def inference(self, x): return self.__forward(x)# end classdef ShowResult(net, dataReader): X,Y = dataReader.GetWholeTrainSamples() # draw sample data plt.plot(X, Y, "b.") # draw predication data PX = np.linspace(0,1,10) PZ = net.inference(PX) plt.plot(PX, PZ, "r") plt.title("Air Conditioner Power") plt.xlabel("Number of Servers(K)") plt.ylabel("Power of Air Conditioner(KW)") plt.show()if __name__ == '__main__': # read data sdr = DataReader_1_0(file_name) sdr.ReadData() # create net eta = 0.1 net = NeuralNet_0_1(eta) net.train(sdr) # result print("w=%f,b=%f" %(net.w, net.b)) # predication result = net.inference(1.346) print("result=", result) ShowResult(net, sdr)
将dw和db改为私有属性可以在它们的变量名前加上两个下划线"__",即将dw改为__dw,将db改为__db。修改后的代码如下:
import numpy as np
import matplotlib.pyplot as plt
from HelperClass.DataReader_1_0 import *
file_name = "../../data/ch04.npz"
class NeuralNet_0_1(object):
def __init__(self, eta):
self.eta = eta
self.w = 0
self.b = 0
self.__dw = 0
self.__db = 0
def __forward(self, x):
z = x * self.w + self.b
return z
def __backward(self, x, y, z):
dz = z - y
self.__db = dz
self.__dw = x * dz
return self.__dw, self.__db
def __update(self):
self.w = self.w - self.eta * self.__dw
self.b = self.b - self.eta * self.__db
def train(self, dataReader):
for i in range(dataReader.num_train):
x, y = dataReader.GetBatchTrainSamples(1)
z = self.__forward(x)
dw, db = self.__backward(x, y, z)
self.__update()