JADE算法matlab代码
时间: 2023-09-03 18:09:24 浏览: 259
jade.rar_ICA-JADE Algorithm_jade_jade算法实现ica_matlab ica JADE_盲分离
5星 · 资源好评率100%
以下是JADE算法的Matlab代码:
```matlab
function [best_x, best_fval, output] = JADE(fitness_func, x0, lb, ub, max_evals, pop_size, c, p)
% JADE: JADE Algorithm for optimization problems
% fitness_func: function handle for fitness evaluation
% x0: initial population, each row is a candidate solution
% lb: lower bound of the search space
% ub: upper bound of the search space
% max_evals: maximum number of fitness evaluations
% pop_size: population size
% c: scaling factor
% p: crossover probability
% best_x: best solution found
% best_fval: best objective function value found
% output: structure containing convergence information
% Calculate dimensionality and initialize population
[n_dim, n_pop] = size(x0);
pop = x0;
% Initialize convergence information
output.best_fval = Inf(max_evals, 1);
output.mean_fval = zeros(max_evals, 1);
% Evaluate initial population
fvals = zeros(n_pop, 1);
for i = 1:n_pop
fvals(i) = fitness_func(pop(:, i));
end
% Set initial best solution and objective function value
[best_fval, best_idx] = min(fvals);
best_x = pop(:, best_idx);
% Save convergence information
output.best_fval(1) = best_fval;
output.mean_fval(1) = mean(fvals);
% Initialize iteration counter
evals = n_pop;
% Main loop
while evals < max_evals
% Generate trial solutions
u = zeros(n_dim, n_pop);
for i = 1:n_pop
% Select three distinct random vectors
r = randperm(n_pop, 3);
while any(r == i)
r = randperm(n_pop, 3);
end
% Generate trial solution
v = pop(:, r(1)) + c * (pop(:, r(2)) - pop(:, r(3)));
% Perform crossover
j_rand = randi(n_dim);
t = rand(n_dim, 1) < p;
t(j_rand) = true;
u(:, i) = t .* v + (1 - t) .* pop(:, i);
end
% Evaluate trial solutions
trial_fvals = zeros(n_pop, 1);
for i = 1:n_pop
trial_fvals(i) = fitness_func(u(:, i));
evals = evals + 1;
if evals >= max_evals
break;
end
end
% Update population
for i = 1:n_pop
if trial_fvals(i) < fvals(i)
pop(:, i) = u(:, i);
fvals(i) = trial_fvals(i);
if fvals(i) < best_fval
best_fval = fvals(i);
best_x = pop(:, i);
end
end
end
% Save convergence information
output.best_fval(evals) = best_fval;
output.mean_fval(evals) = mean(fvals);
end
end
```
该代码实现了 JADE 算法的基本思想,包括初始化种群、生成和评估试验解、更新种群等步骤,并且支持搜索空间边界限制。在使用时需要提供适应度函数、初始种群、搜索空间边界、最大评估次数、种群大小、缩放因子和交叉概率等参数。输出包括最优解、最优目标函数值和收敛信息。
阅读全文