无刷直流电机直接转矩控制单片机代码
时间: 2023-06-19 08:08:29 浏览: 223
直接转矩_电机_直接转矩控制直流无刷电机_源码
5星 · 资源好评率100%
无刷直流电机的直接转矩控制可以通过对电机的三相电流进行控制来实现。以下是一个基于STM32单片机的无刷直流电机直接转矩控制的代码示例:
```c
#include "stm32f10x.h"
#define TIM_PERIOD 65535
// 定义PWM输出对应的GPIO端口和引脚
#define PWM_PORT GPIOA
#define PWM_PIN1 GPIO_Pin_8
#define PWM_PIN2 GPIO_Pin_9
#define PWM_PIN3 GPIO_Pin_10
// 定义对应的定时器和通道
#define TIM TIM1
#define TIM_CHANNEL1 TIM_Channel_1
#define TIM_CHANNEL2 TIM_Channel_2
#define TIM_CHANNEL3 TIM_Channel_3
// 定义电机的最大电流值
#define MAX_CURRENT 1000
// 定义电机的三相电流
int32_t current1, current2, current3;
// 初始化PWM输出
void PWM_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
// 使能PWM输出对应的GPIO端口时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
// 配置GPIO模式为复用推挽输出
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Pin = PWM_PIN1 | PWM_PIN2 | PWM_PIN3;
GPIO_Init(PWM_PORT, &GPIO_InitStructure);
// 使能定时器时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
// 配置定时器时基
TIM_TimeBaseStructure.TIM_Period = TIM_PERIOD;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM, &TIM_TimeBaseStructure);
// 配置定时器通道1~3的PWM输出
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM, &TIM_OCInitStructure);
TIM_OC2Init(TIM, &TIM_OCInitStructure);
TIM_OC3Init(TIM, &TIM_OCInitStructure);
// 使能定时器的预装载功能
TIM_OC1PreloadConfig(TIM, TIM_OCPreload_Enable);
TIM_OC2PreloadConfig(TIM, TIM_OCPreload_Enable);
TIM_OC3PreloadConfig(TIM, TIM_OCPreload_Enable);
// 使能定时器
TIM_Cmd(TIM, ENABLE);
}
// 初始化ADC采样电机电流
void ADC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
// 使能ADC对应的GPIO端口时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
// 配置ADC对应的GPIO引脚为模拟输入
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// 使能ADC时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
// 配置ADC
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 3;
ADC_Init(ADC1, &ADC_InitStructure);
// 配置ADC采样时钟
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_55Cycles5);
// 使能ADC DMA功能
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&(ADC1->DR);
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)¤t1;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 3;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
// 开始DMA传输
DMA_Cmd(DMA1_Channel1, ENABLE);
// 启动ADC采样
ADC_DMACmd(ADC1, ENABLE);
ADC_Cmd(ADC1, ENABLE);
ADC_ResetCalibration(ADC1);
while(ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
// 更新电机三相电流
void UpdateCurrent(void)
{
// 读取DMA缓冲区中的三相电流值
current1 = current1 - 2048;
current2 = current2 - 2048;
current3 = current3 - 2048;
// 限制电流值在最大电流范围内
if(current1 > MAX_CURRENT) current1 = MAX_CURRENT;
if(current1 < -MAX_CURRENT) current1 = -MAX_CURRENT;
if(current2 > MAX_CURRENT) current2 = MAX_CURRENT;
if(current2 < -MAX_CURRENT) current2 = -MAX_CURRENT;
if(current3 > MAX_CURRENT) current3 = MAX_CURRENT;
if(current3 < -MAX_CURRENT) current3 = -MAX_CURRENT;
}
// 根据电机三相电流值输出对应的PWM波形
void SetPWM(void)
{
int32_t pwm1, pwm2, pwm3;
// 计算PWM占空比
pwm1 = (current1 * TIM_PERIOD) / MAX_CURRENT;
pwm2 = (current2 * TIM_PERIOD) / MAX_CURRENT;
pwm3 = (current3 * TIM_PERIOD) / MAX_CURRENT;
// 限制PWM占空比在0~TIM_PERIOD之间
if(pwm1 < 0) pwm1 = 0;
if(pwm1 > TIM_PERIOD) pwm1 = TIM_PERIOD;
if(pwm2 < 0) pwm2 = 0;
if(pwm2 > TIM_PERIOD) pwm2 = TIM_PERIOD;
if(pwm3 < 0) pwm3 = 0;
if(pwm3 > TIM_PERIOD) pwm3 = TIM_PERIOD;
// 输出PWM波形
TIM_SetCompare1(TIM, pwm1);
TIM_SetCompare2(TIM, pwm2);
TIM_SetCompare3(TIM, pwm3);
}
int main(void)
{
PWM_Init();
ADC_Init();
while(1)
{
// 更新电机三相电流
UpdateCurrent();
// 输出PWM波形
SetPWM();
}
}
```
以上代码实现了基于STM32单片机的无刷直流电机直接转矩控制,其中使用了定时器输出PWM波形,ADC采样电机三相电流,并通过计算得到对应的PWM占空比,最后输出PWM波形控制电机转矩。需要注意的是,由于电机的三相电流需要通过DMA传输到内存中,因此需要使用DMA_Init函数来初始化DMA通道。
阅读全文