def __init__(self): super(Wine_net, self).__init__() self.ln1=nn.LayerNorm(11) self.fc1=nn.Linear(11,22) self.fc2=nn.Linear(22,44) self.fc3=nn.Linear(44,1)
时间: 2024-04-06 09:31:43 浏览: 194
mempool_hook_userdef_0924
这段代码是定义了一个名为 `Wine_net` 的神经网络模型,继承自 PyTorch 的 `nn.Module` 类。在模型的初始化函数中,首先调用父类的初始化函数 `super(Wine_net, self).__init__()`,然后定义了模型中的三个层,分别是 `nn.LayerNorm(11)`、`nn.Linear(11,22)`、`nn.Linear(22,44)` 和 `nn.Linear(44,1)`。
`nn.Linear` 表示定义了一个全连接层,第一个参数为输入特征的维度,第二个参数为输出特征的维度。在这个模型中,有三个全连接层,分别是输入层、中间层和输出层,其输入特征的维度分别为 11、22 和 44,输出特征的维度分别为 22、44 和 1。
`nn.LayerNorm` 表示定义了一个 Layer Normalization 层,其输入特征的维度为 11,这个层被用于归一化输入数据,加速神经网络的训练过程。
在模型定义中,每一个层都是模型中的一个组件,可以在模型的前向计算中被调用,将输入数据经过一系列的层计算得到输出结果。
阅读全文