matlab BP神经网络预测并进行可信度分析代码
时间: 2023-08-11 14:06:24 浏览: 166
以下是一个简单的 MATLAB BP 神经网络预测并进行可信度分析的示例代码:
```
% 加载数据
load data.mat
X = input;
Y = output;
% 分割数据集为训练集和测试集
trainRatio = 0.8; % 训练集比例
[trainInd,testInd] = divideblock(size(X,2),trainRatio,1-trainRatio);
% 创建 BP 神经网络
net = feedforwardnet([10 5]);
% 设置训练参数
net.trainParam.showWindow = false;
net.trainParam.epochs = 100;
net.trainParam.goal = 0.01;
% 训练 BP 神经网络
[net,tr] = train(net,X,Y);
% 预测测试集数据
testX = X(:,testInd);
testY = Y(:,testInd);
Yhat = net(testX);
% 计算可信度
error = testY - Yhat;
meanError = mean(abs(error));
stdError = std(abs(error));
% 可视化结果
figure;
plot(testY,'b');
hold on;
plot(Yhat,'r');
xlabel('样本编号');
ylabel('输出值');
legend('真实值','预测值');
figure;
plot(error./testY*100,'b');
hold on;
plot(meanError./testY*100*ones(size(error)),'r--');
plot((meanError+stdError)./testY*100*ones(size(error)),'g--');
plot((meanError-stdError)./testY*100*ones(size(error)),'g--');
xlabel('样本编号');
ylabel('误差百分比');
legend('误差','平均误差','标准差范围');
```
其中,`data.mat` 是输入和输出数据的 MATLAB 格式文件,应该包含两个变量 `input` 和 `output`。`trainRatio` 是训练集比例,可以根据具体情况进行调整。`feedforwardnet([10 5])` 创建一个两个隐藏层,分别有 10 和 5 个神经元的 BP 神经网络。`trainParam` 是训练参数,包括是否显示训练窗口、最大训练轮数和目标误差等。`train` 函数用于训练 BP 神经网络,返回训练好的网络和训练信息。`testX` 和 `testY` 是测试集数据,`Yhat` 是 BP 神经网络的预测结果。`error` 是预测误差,`meanError` 和 `stdError` 是误差的平均值和标准差,用于计算可信度。最后两个图形分别是真实值和预测值的比较以及误差百分比的分布和可信度范围的标记。
注意,这只是一个简单的示例代码,实际应用中可能需要更多的数据预处理、模型优化和可信度分析方法。
阅读全文
相关推荐


















