用deepfashion数据集,基本pytorch和resnet算法进行学习的代码示例

时间: 2024-03-14 16:46:55 浏览: 19
好的,以下是一个使用DeepFashion数据集、基本PyTorch和ResNet算法进行学习的代码示例: ```python import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder # 定义ResNet模型 class ResNet(nn.Module): def __init__(self, num_classes=50): super(ResNet, self).__init__() self.resnet = torchvision.models.resnet50(pretrained=False) self.resnet.fc = nn.Linear(2048, num_classes) def forward(self, x): out = self.resnet(x) return out # 数据预处理 transform_train = transforms.Compose([ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) transform_val = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 加载数据集 train_dataset = ImageFolder(root='./deepfashion/train', transform=transform_train) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) val_dataset = ImageFolder(root='./deepfashion/validation', transform=transform_val) val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False) # 定义模型、损失函数和优化器 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = ResNet(num_classes=50).to(device) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): train_loss = 0.0 train_acc = 0.0 val_loss = 0.0 val_acc = 0.0 # 训练阶段 model.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss /= len(train_loader.dataset) train_acc = train_acc.float() / len(train_loader.dataset) # 验证阶段 model.eval() with torch.no_grad(): for i, (images, labels) in enumerate(val_loader): images = images.to(device) labels = labels.to(device) outputs = model(images) loss = criterion(outputs, labels) val_loss += loss.item() _, preds = torch.max(outputs, 1) val_acc += torch.sum(preds == labels.data) val_loss /= len(val_loader.dataset) val_acc = val_acc.float() / len(val_loader.dataset) # 打印结果 print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}' .format(epoch+1, num_epochs, train_loss, train_acc, val_loss, val_acc)) ``` 这里我们使用了PyTorch内置的ResNet模型,并在其基础上进行微调以适应DeepFashion数据集。我们还定义了数据预处理、数据加载、模型、损失函数和优化器。在训练过程中,我们使用了交叉熵损失函数和随机梯度下降(SGD)优化器。最后,我们打印了每个epoch的训练和验证损失,以及训练和验证准确率。

相关推荐

最新推荐

recommend-type

pytorch学习教程之自定义数据集

在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程。 开发环境 Ubuntu 18.04 pytorch 1.0 pycharm 实验目的 掌握pytorch中数据集相关的API接口和类 熟悉...
recommend-type

Pytorch修改ResNet模型全连接层进行直接训练实例

在本篇文章里小编给大家整理的是关于Pytorch修改ResNet模型全连接层进行直接训练相关知识点,有需要的朋友们参考下。
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

PyTorch线性回归和逻辑回归实战示例

主要介绍了PyTorch线性回归和逻辑回归实战示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

Google Colaboratory是谷歌开放的一款研究工具,主要用于机器学习的开发和研究。 工具优势:Google Colab最大的好处是给广大的AI开发者提供了免费的GPU使用。你可以在上面轻松地跑例如:Keras、Tensorflow、Pytorch...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。