用deepfashion数据集,基本pytorch和resnet算法进行学习的代码示例
时间: 2024-03-14 19:46:55 浏览: 70
基于pytorch和ResNet的手写数学符号识别项目代码.zip
好的,以下是一个使用DeepFashion数据集、基本PyTorch和ResNet算法进行学习的代码示例:
```python
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
# 定义ResNet模型
class ResNet(nn.Module):
def __init__(self, num_classes=50):
super(ResNet, self).__init__()
self.resnet = torchvision.models.resnet50(pretrained=False)
self.resnet.fc = nn.Linear(2048, num_classes)
def forward(self, x):
out = self.resnet(x)
return out
# 数据预处理
transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_val = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载数据集
train_dataset = ImageFolder(root='./deepfashion/train', transform=transform_train)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataset = ImageFolder(root='./deepfashion/validation', transform=transform_val)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# 定义模型、损失函数和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ResNet(num_classes=50).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
val_loss = 0.0
val_acc = 0.0
# 训练阶段
model.train()
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, preds = torch.max(outputs, 1)
train_acc += torch.sum(preds == labels.data)
train_loss /= len(train_loader.dataset)
train_acc = train_acc.float() / len(train_loader.dataset)
# 验证阶段
model.eval()
with torch.no_grad():
for i, (images, labels) in enumerate(val_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, preds = torch.max(outputs, 1)
val_acc += torch.sum(preds == labels.data)
val_loss /= len(val_loader.dataset)
val_acc = val_acc.float() / len(val_loader.dataset)
# 打印结果
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'
.format(epoch+1, num_epochs, train_loss, train_acc, val_loss, val_acc))
```
这里我们使用了PyTorch内置的ResNet模型,并在其基础上进行微调以适应DeepFashion数据集。我们还定义了数据预处理、数据加载、模型、损失函数和优化器。在训练过程中,我们使用了交叉熵损失函数和随机梯度下降(SGD)优化器。最后,我们打印了每个epoch的训练和验证损失,以及训练和验证准确率。
阅读全文