DBN实现故障分类的代码
时间: 2023-05-25 20:04:40 浏览: 105
很抱歉,由于您没有提供更多详细信息,我不能提供完整的代码。但是,以下是一个简单的DBN实现分类问题的代码示例:
```python
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 定义参数
learning_rate = 0.01
training_epochs = 10
batch_size = 100
display_step = 1
# 定义输入
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
# 定义权重和偏置
W1 = tf.Variable(tf.random_normal([784, 256]))
b1 = tf.Variable(tf.random_normal([256]))
W2 = tf.Variable(tf.random_normal([256, 128]))
b2 = tf.Variable(tf.random_normal([128]))
W3 = tf.Variable(tf.random_normal([128, 64]))
b3 = tf.Variable(tf.random_normal([64]))
W4 = tf.Variable(tf.random_normal([64, 10]))
b4 = tf.Variable(tf.random_normal([10]))
# 定义网络结构:DBN
def model(x):
hidden_layer1 = tf.nn.sigmoid(tf.add(tf.matmul(x, W1), b1))
hidden_layer2 = tf.nn.sigmoid(tf.add(tf.matmul(hidden_layer1, W2), b2))
hidden_layer3 = tf.nn.sigmoid(tf.add(tf.matmul(hidden_layer2, W3), b3))
output_layer = tf.nn.softmax(tf.add(tf.matmul(hidden_layer3, W4), b4))
return output_layer
# 定义损失函数和优化器
pred = model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# 进行训练
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
avg_cost += c / total_batch
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
# 测试模型
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
```
阅读全文