使用学习过的理论知识(Numpy数值分析基础、Matplotlib数据可视化基础、Pandas统计分析基础),对data.csv用户用户用电量数据进行相关处理,其中数据中有编号为1-200的200位电力用户,DATA_DATE表示时间,如2015/1/1表示2015年1月1日,KWH为用电量。请完成以下工作:1、将数据进行转置,转置后行为用户编号、列为日期、值为用户每日用电量。2、对数据中的异常数据进行识别并处理。3、统计每个用户用电数据的基本统计量,包括:最大值、最小值、均值、中位数、和、方差、偏度、峰度。4、每个用户用电数据按日差分,并求取差分结果的基本统计量,统计量同3。5、求取每个用户的5%分位数。6、每个用户按周求和并差分(一周7天,年度分开),并求取差分结果的基本统计量,统计量同三。7、统计每个用户的日用电量在其最大值0.9倍以上的次数。8、求取每个用户日为最大值/最小值的索引月份,若最大值/最小值存在于多个月份中,则输出含有最大值/最小值最多的那个月份。如1号用户的最小值为0,则看哪个月的0最多。9、求取每个用户七八月电量和与三四月电量和的比值,最大值的比值,最小值的比值,均值(日均电量)的比值。10、合并上述特征。

时间: 2023-12-06 18:45:43 浏览: 125
1、将数据进行转置,转置后行为用户编号、列为日期、值为用户每日用电量。 ```python import pandas as pd # 读取数据 df = pd.read_csv('data.csv') # 转换日期格式 df['DATA_DATE'] = pd.to_datetime(df['DATA_DATE']) # 转置数据 df_pivot = df.pivot(index='ID', columns='DATA_DATE', values='KWH') ``` 2、对数据中的异常数据进行识别并处理。 ```python import numpy as np # 计算每个用户每天用电量的标准差 std = df_pivot.std(axis=1) # 计算每个用户每天用电量的平均值 mean = df_pivot.mean(axis=1) # 将超过平均值+3倍标准差或小于平均值-3倍标准差的数据替换为NaN df_pivot[(df_pivot > mean.values[:, np.newaxis] + 3 * std.values[:, np.newaxis]) | (df_pivot < mean.values[:, np.newaxis] - 3 * std.values[:, np.newaxis])] = np.nan ``` 3、统计每个用户用电数据的基本统计量,包括:最大值、最小值、均值、中位数、和、方差、偏度、峰度。 ```python from scipy.stats import skew, kurtosis # 统计每个用户用电数据的基本统计量 statistics = pd.DataFrame({ 'max': df_pivot.max(), 'min': df_pivot.min(), 'mean': df_pivot.mean(), 'median': df_pivot.median(), 'sum': df_pivot.sum(), 'var': df_pivot.var(), 'skew': skew(df_pivot, axis=1), 'kurtosis': kurtosis(df_pivot, axis=1) }) ``` 4、每个用户用电数据按日差分,并求取差分结果的基本统计量,统计量同3。 ```python # 按日差分 df_diff = df_pivot.diff(axis=1) # 删除第一列的NaN值 df_diff = df_diff.iloc[:, 1:] # 统计每个用户用电数据按日差分后的基本统计量 diff_statistics = pd.DataFrame({ 'max': df_diff.max(), 'min': df_diff.min(), 'mean': df_diff.mean(), 'median': df_diff.median(), 'sum': df_diff.sum(), 'var': df_diff.var(), 'skew': skew(df_diff, axis=1), 'kurtosis': kurtosis(df_diff, axis=1) }) ``` 5、求取每个用户的5%分位数。 ```python # 求取每个用户的5%分位数 quantile_5 = df_pivot.quantile(q=0.05, axis=1) ``` 6、每个用户按周求和并差分(一周7天,年度分开),并求取差分结果的基本统计量,统计量同3。 ```python # 按周求和 df_weekly = df_pivot.resample('W', axis=1).sum() # 按年度分开 df_weekly = df_weekly.groupby(df_weekly.columns.year, axis=1) # 差分 df_weekly_diff = df_weekly.diff(axis=1) # 删除第一列的NaN值 df_weekly_diff = df_weekly_diff.iloc[:, 1:] # 统计每个用户用电数据按周差分后的基本统计量 weekly_diff_statistics = pd.DataFrame({ 'max': df_weekly_diff.max(), 'min': df_weekly_diff.min(), 'mean': df_weekly_diff.mean(), 'median': df_weekly_diff.median(), 'sum': df_weekly_diff.sum(), 'var': df_weekly_diff.var(), 'skew': skew(df_weekly_diff, axis=1), 'kurtosis': kurtosis(df_weekly_diff, axis=1) }) ``` 7、统计每个用户的日用电量在其最大值0.9倍以上的次数。 ```python # 统计每个用户的日用电量在其最大值0.9倍以上的次数 count = (df_pivot > df_pivot.max() * 0.9).sum() ``` 8、求取每个用户日为最大值/最小值的索引月份,若最大值/最小值存在于多个月份中,则输出含有最大值/最小值最多的那个月份。如1号用户的最小值为0,则看哪个月的0最多。 ```python # 求取每个用户日为最大值的索引月份 max_month = df_pivot.idxmax(axis=1).dt.month # 求取每个用户日为最小值的索引月份 min_month = df_pivot.idxmin(axis=1).dt.month # 统计每个用户日为最大值/最小值的索引月份中出现次数最多的月份 max_month_count = max_month.value_counts() min_month_count = min_month.value_counts() # 输出结果 print('每个用户日为最大值的索引月份:') print(max_month[max_month == max_month_count.idxmax()].value_counts()) print('\n每个用户日为最小值的索引月份:') print(min_month[min_month == min_month_count.idxmax()].value_counts()) ``` 9、求取每个用户七八月电量和与三四月电量和的比值,最大值的比值,最小值的比值,均值(日均电量)的比值。 ```python # 求取每个用户七八月电量和 summer_sum = df_pivot.loc[:, df_pivot.columns.month.isin([7, 8])].sum(axis=1) # 求取每个用户三四月电量和 spring_sum = df_pivot.loc[:, df_pivot.columns.month.isin([3, 4])].sum(axis=1) # 求取比值 ratio = summer_sum / spring_sum # 输出结果 print('每个用户七八月电量和与三四月电量和的比值:') print(ratio) print('\n最大值的比值:') print(ratio.max()) print('\n最小值的比值:') print(ratio.min()) print('\n均值的比值:') print(ratio.mean()) ``` 10、合并上述特征。 ```python # 合并特征 features = pd.concat([ statistics, diff_statistics, pd.DataFrame({'quantile_5': quantile_5}), weekly_diff_statistics, pd.DataFrame({'count': count}), pd.DataFrame({'max_month': max_month, 'min_month': min_month}), pd.DataFrame({'ratio': ratio}) ], axis=1) ```

相关推荐

最新推荐

recommend-type

Numpy&pandas(八)–股票分析实例

在本篇关于“Numpy & Pandas(八)–股票分析实例”的文章中,我们将探讨如何使用Python的数据处理库Pandas以及Numpy进行股票数据分析。首先,我们需要导入所需的库,如Pandas、Numpy和Matplotlib,以便进行数据读取...
recommend-type

案例:通过空气质量指数AQI学习统计分析并进行预测(上)

【空气质量指数AQI的...总之,通过这个案例,读者将掌握如何运用统计分析工具,如numpy、pandas、matplotlib和seaborn,对空气质量数据进行处理和分析,从而了解和预测空气质量变化的趋势,为环境保护提供决策支持。
recommend-type

Python数据分析实战【第三章】3.12-Matplotlib箱型图【python】

在数据分析领域,可视化工具起着至关重要的作用,而Python中的Matplotlib库是数据可视化的基石之一。本节我们将深入探讨如何使用Matplotlib绘制箱型图(Boxplot),它是一种非常有效的展示一组数据分布特性的图形,...
recommend-type

Python数据分析和特征提取

在Python中,pandas库用于数据操作,numpy用于数值计算,seaborn和matplotlib用于可视化,而sklearn库则提供了丰富的机器学习模型和数据预处理工具。 在实践中,数据科学家会按照以上步骤逐步深入,从构建基线模型...
recommend-type

kaggle练习-共享单车数据分析

在Python中,我们通常使用`numpy`、`pandas`、`matplotlib`和`seaborn`等库进行数据分析和可视化。代码中,我们导入了这些库并用`pd.read_csv()`函数分别读取训练集和测试集的数据。接着,通过`head()`和`info()`...
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。