使用学习过的理论知识(Numpy数值分析基础、Matplotlib数据可视化基础、Pandas统计分析基础),对data.csv用户用户用电量数据进行相关处理,其中数据中有编号为1-200的200位电力用户,DATA_DATE表示时间,如2015/1/1表示2015年1月1日,KWH为用电量。请完成以下工作:1、将数据进行转置,转置后行为用户编号、列为日期、值为用户每日用电量。2、对数据中的异常数据进行识别并处理。3、统计每个用户用电数据的基本统计量,包括:最大值、最小值、均值、中位数、和、方差、偏度、峰度。4、每个用户用电数据按日差分,并求取差分结果的基本统计量,统计量同3。5、求取每个用户的5%分位数。6、每个用户按周求和并差分(一周7天,年度分开),并求取差分结果的基本统计量,统计量同三。7、统计每个用户的日用电量在其最大值0.9倍以上的次数。8、求取每个用户日为最大值/最小值的索引月份,若最大值/最小值存在于多个月份中,则输出含有最大值/最小值最多的那个月份。如1号用户的最小值为0,则看哪个月的0最多。9、求取每个用户七八月电量和与三四月电量和的比值,最大值的比值,最小值的比值,均值(日均电量)的比值。10、合并上述特征。

时间: 2023-12-06 16:45:43 浏览: 43
1、将数据进行转置,转置后行为用户编号、列为日期、值为用户每日用电量。 ```python import pandas as pd # 读取数据 df = pd.read_csv('data.csv') # 转换日期格式 df['DATA_DATE'] = pd.to_datetime(df['DATA_DATE']) # 转置数据 df_pivot = df.pivot(index='ID', columns='DATA_DATE', values='KWH') ``` 2、对数据中的异常数据进行识别并处理。 ```python import numpy as np # 计算每个用户每天用电量的标准差 std = df_pivot.std(axis=1) # 计算每个用户每天用电量的平均值 mean = df_pivot.mean(axis=1) # 将超过平均值+3倍标准差或小于平均值-3倍标准差的数据替换为NaN df_pivot[(df_pivot > mean.values[:, np.newaxis] + 3 * std.values[:, np.newaxis]) | (df_pivot < mean.values[:, np.newaxis] - 3 * std.values[:, np.newaxis])] = np.nan ``` 3、统计每个用户用电数据的基本统计量,包括:最大值、最小值、均值、中位数、和、方差、偏度、峰度。 ```python from scipy.stats import skew, kurtosis # 统计每个用户用电数据的基本统计量 statistics = pd.DataFrame({ 'max': df_pivot.max(), 'min': df_pivot.min(), 'mean': df_pivot.mean(), 'median': df_pivot.median(), 'sum': df_pivot.sum(), 'var': df_pivot.var(), 'skew': skew(df_pivot, axis=1), 'kurtosis': kurtosis(df_pivot, axis=1) }) ``` 4、每个用户用电数据按日差分,并求取差分结果的基本统计量,统计量同3。 ```python # 按日差分 df_diff = df_pivot.diff(axis=1) # 删除第一列的NaN值 df_diff = df_diff.iloc[:, 1:] # 统计每个用户用电数据按日差分后的基本统计量 diff_statistics = pd.DataFrame({ 'max': df_diff.max(), 'min': df_diff.min(), 'mean': df_diff.mean(), 'median': df_diff.median(), 'sum': df_diff.sum(), 'var': df_diff.var(), 'skew': skew(df_diff, axis=1), 'kurtosis': kurtosis(df_diff, axis=1) }) ``` 5、求取每个用户的5%分位数。 ```python # 求取每个用户的5%分位数 quantile_5 = df_pivot.quantile(q=0.05, axis=1) ``` 6、每个用户按周求和并差分(一周7天,年度分开),并求取差分结果的基本统计量,统计量同3。 ```python # 按周求和 df_weekly = df_pivot.resample('W', axis=1).sum() # 按年度分开 df_weekly = df_weekly.groupby(df_weekly.columns.year, axis=1) # 差分 df_weekly_diff = df_weekly.diff(axis=1) # 删除第一列的NaN值 df_weekly_diff = df_weekly_diff.iloc[:, 1:] # 统计每个用户用电数据按周差分后的基本统计量 weekly_diff_statistics = pd.DataFrame({ 'max': df_weekly_diff.max(), 'min': df_weekly_diff.min(), 'mean': df_weekly_diff.mean(), 'median': df_weekly_diff.median(), 'sum': df_weekly_diff.sum(), 'var': df_weekly_diff.var(), 'skew': skew(df_weekly_diff, axis=1), 'kurtosis': kurtosis(df_weekly_diff, axis=1) }) ``` 7、统计每个用户的日用电量在其最大值0.9倍以上的次数。 ```python # 统计每个用户的日用电量在其最大值0.9倍以上的次数 count = (df_pivot > df_pivot.max() * 0.9).sum() ``` 8、求取每个用户日为最大值/最小值的索引月份,若最大值/最小值存在于多个月份中,则输出含有最大值/最小值最多的那个月份。如1号用户的最小值为0,则看哪个月的0最多。 ```python # 求取每个用户日为最大值的索引月份 max_month = df_pivot.idxmax(axis=1).dt.month # 求取每个用户日为最小值的索引月份 min_month = df_pivot.idxmin(axis=1).dt.month # 统计每个用户日为最大值/最小值的索引月份中出现次数最多的月份 max_month_count = max_month.value_counts() min_month_count = min_month.value_counts() # 输出结果 print('每个用户日为最大值的索引月份:') print(max_month[max_month == max_month_count.idxmax()].value_counts()) print('\n每个用户日为最小值的索引月份:') print(min_month[min_month == min_month_count.idxmax()].value_counts()) ``` 9、求取每个用户七八月电量和与三四月电量和的比值,最大值的比值,最小值的比值,均值(日均电量)的比值。 ```python # 求取每个用户七八月电量和 summer_sum = df_pivot.loc[:, df_pivot.columns.month.isin([7, 8])].sum(axis=1) # 求取每个用户三四月电量和 spring_sum = df_pivot.loc[:, df_pivot.columns.month.isin([3, 4])].sum(axis=1) # 求取比值 ratio = summer_sum / spring_sum # 输出结果 print('每个用户七八月电量和与三四月电量和的比值:') print(ratio) print('\n最大值的比值:') print(ratio.max()) print('\n最小值的比值:') print(ratio.min()) print('\n均值的比值:') print(ratio.mean()) ``` 10、合并上述特征。 ```python # 合并特征 features = pd.concat([ statistics, diff_statistics, pd.DataFrame({'quantile_5': quantile_5}), weekly_diff_statistics, pd.DataFrame({'count': count}), pd.DataFrame({'max_month': max_month, 'min_month': min_month}), pd.DataFrame({'ratio': ratio}) ], axis=1) ```

相关推荐

最新推荐

recommend-type

计算机专业毕业设计范例845篇jsp2118基于Web停车场管理系统的设计与实现_Servlet_MySql演示录像.rar

博主给大家详细整理了计算机毕业设计最新项目,对项目有任何疑问(部署跟文档),都可以问博主哦~ 一、JavaWeb管理系统毕设项目【计算机毕设选题】计算机毕业设计选题,500个热门选题推荐,更多作品展示 计算机毕业设计|PHP毕业设计|JSP毕业程序设计|Android毕业设计|Python设计论文|微信小程序设计
recommend-type

Windows 10 平台 FFmpeg 开发环境搭建 博客资源

【FFmpeg】Windows 10 平台 FFmpeg 开发环境搭建 ④ ( FFmpeg 开发库内容说明 | 创建并配置 FFmpeg 项目 | 拷贝 DLL 动态库到 SysWOW64 目录 ) https://hanshuliang.blog.csdn.net/article/details/139172564 博客资源 一、FFmpeg 开发库 1、FFmpeg 开发库编译 2、FFmpeg 开发库内容说明 二、创建并配置 FFmpeg 项目 1、拷贝 dll 动态库到 C:\Windows\SysWOW64 目录 - 必须操作 特别关注 2、创建 Qt 项目 - C 语言程序 3、配置 FFmpeg 开发库 - C 语言项目 4、创建并配置 FFmpeg 开发库 - C++ 项目
recommend-type

基于 Spring Cloud 、Spring Boot、 OAuth2 的 RBAC 企业快速开发平台

基于 Spring Cloud 、Spring Boot、 OAuth2 的 RBAC 企业快速开发平台, 同时支持微服务架构和单体架构。提供对 Spring Authorization Server 生产级实践,支持多种安全授权模式。提供对常见容器化方案支持 Kubernetes、Rancher2 、Kubesphere、EDAS、SAE 支持
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入了解MATLAB开根号的最新研究和应用:获取开根号领域的最新动态

![matlab开根号](https://www.mathworks.com/discovery/image-segmentation/_jcr_content/mainParsys3/discoverysubsection_1185333930/mainParsys3/image_copy.adapt.full.medium.jpg/1712813808277.jpg) # 1. MATLAB开根号的理论基础 开根号运算在数学和科学计算中无处不在。在MATLAB中,开根号可以通过多种函数实现,包括`sqrt()`和`nthroot()`。`sqrt()`函数用于计算正实数的平方根,而`nt
recommend-type

react的函数组件的使用

React 的函数组件是一种简单的组件类型,用于定义无状态或者只读组件。 它们通常接受一个 props 对象作为参数并返回一个 React 元素。 函数组件的优点是代码简洁、易于测试和重用,并且它们使 React 应用程序的性能更加出色。 您可以使用函数组件来呈现简单的 UI 组件,例如按钮、菜单、标签或其他部件。 您还可以将它们与 React 中的其他组件类型(如类组件或 Hooks)结合使用,以实现更复杂的 UI 交互和功能。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

解决MATLAB开根号常见问题:提供开根号运算的解决方案

![解决MATLAB开根号常见问题:提供开根号运算的解决方案](https://img-blog.csdnimg.cn/d939d1781acc404d8c826e8af207e68f.png) # 1. MATLAB开根号运算基础** MATLAB开根号运算用于计算一个数的平方根。其语法为: ``` y = sqrt(x) ``` 其中: * `x`:要开根号的数或数组 * `y`:开根号的结果 开根号运算的输入可以是实数、复数、矩阵或数组。对于实数,开根号运算返回一个非负实数。对于复数,开根号运算返回一个复数。对于矩阵或数组,开根号运算逐元素执行,对每个元素进行开根号运算。 #