stata拟合优度检验指令
时间: 2024-04-13 17:22:18 浏览: 1015
拟合优度检验
在Stata中,拟合优度检验用于评估回归模型的拟合程度,常用的指令是`estat gof`。该指令可以在拟合回归模型后使用,它提供了多种统计量来评估模型的拟合优度。
具体来说,`estat gof`指令提供了以下几个统计量:
1. R-squared(R方):衡量模型解释变量对因变量变异的比例,取值范围为0到1,越接近1表示模型拟合得越好。
2. Adj R-squared(调整R方):在R方的基础上考虑了自变量个数和样本量的调整,避免了过度拟合的问题。
3. F统计量:用于检验回归模型整体的显著性,如果F统计量的p值小于设定的显著性水平(通常为0.05),则可以拒绝原假设,即回归模型整体显著。
4. Log likelihood(对数似然):用于比较不同模型的拟合优度,数值越大表示模型拟合得越好。
5. AIC(赤池信息准则)和BIC(贝叶斯信息准则):用于比较不同模型的拟合优度,数值越小表示模型拟合得越好。
使用`estat gof`指令的示例代码如下:
```
regress dependent_var independent_var1 independent_var2
estat gof
```
阅读全文