这段代码s1.addConstrs(np.sum((bnewplan1[q][i]*normal_mean[i] for q in range(m))for i in range(numpatient)) +80-optime<=0)报错TypeError: unsupported operand type(s) for +: 'int' and 'generator'应该怎么修改呢

时间: 2024-04-13 18:28:59 浏览: 145
该错误是由于在约束条件中,你尝试将生成器表达式与整数进行相加而导致的。要解决这个问题,你可以使用`quicksum`函数将生成器表达式转换为求和的形式。 以下是修改后的代码示例: ```python s1.addConstrs(gp.quicksum(bnewplan1[q][i]*normal_mean[i] for q in range(m)) + 80 - optime <= 0 for i in range(numpatient)) ``` 在这个例子中,`quicksum`函数用于将生成器表达式转换为求和的形式。这样,你就可以将整个求和结果与其他项进行相加。 请根据你的具体问题进行适当的修改,并确保在约束条件中使用正确的求和函数。
相关问题

这个代码def sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence): s1 = gp.Model("sp1") m=5 # 定义变量 bnewplan1 = [] for q in range(m): bnewplan1.append([]) for i in range(numpatient): bnewplan1[q].append(s1.addVar(vtype='B', name='bnewplan1')) s1._x = bnewplan1 #设置约束条件 s1.setObjective(np.sum(pi[i]*bnewplan1[q][i] for i in range(numpatient) for q in range(m)),GRB.MAXIMIZE) s1.addConstrs(gp.quicksum(bnewplan1[q][i]*normal_mean[i] for i in range(numpatient)) +80-optime<=0 for q in range(m)) # 定义回调函数来捕获可行解 global feasible_solutions feasible_solutions = [] def mycallback(s1, where = None): bnewplan1= s1._x if where == GRB.Callback.MIPSOL: x_sol = s1.cbGetSolution(bnewplan1) feasible_solutions.append(x_sol) # 设置回调函数 s1.optimize(mycallback) # 打印所有可行解 for sol in feasible_solutions: # m = len(feasible_solutions) print('sol',sol) return sol sol = sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence)中报错UnboundLocalError: local variable 'sol' referenced before assignment该怎么解决

在你的代码中,`sol` 是在 `for sol in feasible_solutions` 循环中进行赋值的,但是如果 `feasible_solutions` 是空的,循环将不会执行,因此 `sol` 没有被赋值就被引用了,导致报错。 为了解决这个问题,你可以在定义 `sol` 之前初始化它,并在循环结束后检查是否有可行解被找到,然后再返回 `sol`。参考下面的代码修改: ```python def sp1(pi, perovertimecost, normal_mean, numpatient, patient_sequence): s1 = gp.Model("sp1") m = 5 # 定义变量 bnewplan1 = [] for q in range(m): bnewplan1.append([]) for i in range(numpatient): bnewplan1[q].append(s1.addVar(vtype='B', name='bnewplan1')) s1._x = bnewplan1 # 设置约束条件 s1.setObjective(np.sum(pi[i] * bnewplan1[q][i] for i in range(numpatient) for q in range(m)), GRB.MAXIMIZE) s1.addConstrs(gp.quicksum(bnewplan1[q][i] * normal_mean[i] for i in range(numpatient)) + 80 - optime <= 0 for q in range(m)) # 定义回调函数来捕获可行解 global feasible_solutions feasible_solutions = [] def mycallback(s1, where=None): bnewplan1 = s1._x if where == GRB.Callback.MIPSOL: x_sol = s1.cbGetSolution(bnewplan1) feasible_solutions.append(x_sol) # 设置回调函数 s1.optimize(mycallback) # 检查是否有可行解被找到 if len(feasible_solutions) > 0: sol = feasible_solutions[-1] # 最后一个可行解 print('sol', sol) return sol else: print('No feasible solutions found.') return None sol = sp1(pi, perovertimecost, normal_mean, numpatient, patient_sequence) ``` 在这个修改后的代码中,我在循环之前初始化了 `sol`,并在循环结束后检查了 `feasible_solutions` 的长度,如果大于0,则将最后一个可行解赋值给 `sol`。如果没有找到可行解,将返回 `None`。 请根据你的具体需求进行适当的修改,并确保在调用 `sp1` 函数时,至少能找到一个可行解。

def mycallback(s, where = None): global feasible_solutions # 在函数中使用全局变量 x = s._x # 获取变量x if where == GRB.Callback.MULTIOBJ: # 获取当前得到的解 x_sol = s.cbGetSolution(x) feasible_solutions.append(x_sol) # 将解添加到列表中 elif where == GRB.Callback.MIPSOL: # 当找到下一个可行解时,也将其添加到列表中 obj_bound =s.cbGet(GRB.Callback.MIPSOL_OBJBND) if obj_bound is not None and obj_bound < GRB.INFINITY: feasible_solutions.append(s.cbGetSolution(x)) #子问题1没超时 def sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence): s1 = gp.Model("sp1") m=5 bnewplan1 = s1.addVars(range(m), range(numpatient),vtype=GRB.BINARY,name='bnewplan1') s1._x = bnewplan1 #设置目标函数、约束条件 sp1obj = gp.quicksum(pi[i]*bnewplan1[q,i] for q in range(m) for i in range(numpatient)) s1.setObjective(sp1obj,GRB.MAXIMIZE) s1.addConstrs(gp.quicksum(bnewplan1[q,i]*normal_mean[i] for i in range(numpatient)) +80-optime<=0 for q in range(m)) global feasible_solutions feasible_solutions = [] # 声明全局变量 # 设置回调函数 s1.setParam(GRB.Param.SolutionLimit, 1e3) s1.params.outputFlag = 0 # 关闭输出 s1.optimize(mycallback) s1.optimize() sp_obj=s1.objval print('子问题的最优解为',sp_obj) print('feasible_solutions',feasible_solutions) return sp_obj sp_obj = sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence)这段代码为什么输出feasible_solutions是空列表 呢?

在你的代码中,`feasible_solutions` 是一个全局变量,用于存储找到的可行解。然而,它在 `mycallback` 函数中被初始化为一个空列表 `[]`,并在每次调用 `sp1` 函数时都会被重新初始化。 这意味着在每次调用 `mycallback` 函数时,`feasible_solutions` 都会被重置为空列表。因此,在 `sp1` 函数中打印 `feasible_solutions` 的时候,它会是一个空列表。 要解决这个问题,你可以将 `feasible_solutions` 的初始化移到 `sp1` 函数之外,这样它就不会被重新初始化了。以下是修改后的代码示例: ```python def mycallback(s, where = None): global feasible_solutions # 在函数中使用全局变量 x = s._x # 获取变量x if where == GRB.Callback.MULTIOBJ: # 获取当前得到的解 x_sol = s.cbGetSolution(x) feasible_solutions.append(x_sol) # 将解添加到列表中 elif where == GRB.Callback.MIPSOL: # 当找到下一个可行解时,也将其添加到列表中 obj_bound =s.cbGet(GRB.Callback.MIPSOL_OBJBND) if obj_bound is not None and obj_bound < GRB.INFINITY: feasible_solutions.append(s.cbGetSolution(x)) #子问题1没超时 def sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence): s1 = gp.Model("sp1") m=5 bnewplan1 = s1.addVars(range(m), range(numpatient),vtype=GRB.BINARY,name='bnewplan1') s1._x = bnewplan1 #设置目标函数、约束条件 sp1obj = gp.quicksum(pi[i]*bnewplan1[q,i] for q in range(m) for i in range(numpatient)) s1.setObjective(sp1obj,GRB.MAXIMIZE) s1.addConstrs(gp.quicksum(bnewplan1[q,i]*normal_mean[i] for i in range(numpatient)) +80-optime<=0 for q in range(m)) #global feasible_solutions # 移除全局变量声明 #feasible_solutions = [] # 声明全局变量 # 设置回调函数 s1.setParam(GRB.Param.SolutionLimit, 1e3) s1.params.outputFlag = 0 # 关闭输出 s1.optimize(mycallback) s1.optimize() sp_obj=s1.objval print('子问题的最优解为',sp_obj) print('feasible_solutions',feasible_solutions) return sp_obj feasible_solutions = [] # 初始化全局变量 sp_obj = sp1(pi,perovertimecost,normal_mean,numpatient,patient_sequence) ``` 在这个示例中,我将 `feasible_solutions` 的初始化移到 `sp1` 函数之外,并将其设置为空列表。这样,在每次调用 `sp1` 函数时,`feasible_solutions` 不会被重新初始化,并且可以正确地存储找到的可行解。 请注意,在修改后的代码中,你需要在调用 `sp1` 函数之前初始化 `feasible_solutions` 列表。这样,`feasible_solutions` 就会在整个程序中被共享,并且可以正确地存储和访问其中的解。
阅读全文

相关推荐

最新推荐

recommend-type

2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12.pdf

2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 CSP-S1答案解析及总结(C)-2020.10.12 2020 CSP-J1 ...
recommend-type

LPC55S1x_LPC551x Data Sheet中文版.docx

5. **ROM引导加载器**:支持从片上闪存启动,提供CRC32图像完整性检查,并可通过多种接口进行In-System Programming(ISP)以更新闪存,包括USB0/1、UART、SPI和I2C接口。 6. **外设接口**:包括高速/全速USB主机和...
recommend-type

NR网络拒绝码-5gsm_cause = 29 (0x1d) (User authentication failed).docx

若Back-off timer值IE包含且5GSM原因值不是特定的资源不足情况,网络可能会包含重试指示IE,以告知UE是否允许在PLMN中对相同DNN的PDN连接性流程进行S1模式下的重试尝试。重试指示也可能指导UE是否应在系统间切换后...
recommend-type

Java Collections.sort()实现List排序的默认方法和自定义方法

for (int i = 0; i &lt; list.size(); i++) { System.out.print(list.get(i)); } ``` 在上面的示例代码中,我们首先创建了一个ArrayList对象,并将一些字符串元素添加到其中。然后,我们使用Collections.sort()方法对...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。