matlab transformer分类
时间: 2023-08-23 21:05:47 浏览: 180
transformer分类代码
4星 · 用户满意度95%
kbhit()) // 检测键盘输入
{
char ch = _getch();
switch (ch)
{
case 'a':
if (checkShape(shape, -1, 0, 0))
{
drawShape(shape, true在MATLAB中使用Transformer进行分类,可以遵循以下步骤:
1.准备数据集:收集或创建适当);
shape.x--;
drawShape(shape);
}
break;
case 'd':
if (checkShape(shape, 的数据集,将其分为训练集、验证集和测试集。
2.数据预处理:对数据进行必要1, 0, 0))
{
drawShape(shape, true);
shape.x++;
drawShape(shape);
}
的预处理,如图像缩放、归一化、裁剪、旋转等。
3.构建Transformer模型: break;
case 's':
if (checkShape(shape, 0, 1, 0))
{
drawShape(shape, true);
shape.y++;
drawShape(shape);
}
break;
case 'w':
if (check使用MATLAB Deep Learning Toolbox中的transformerLayer函数构建Transformer模型。
4.训练模型:使用训练集Shape(shape, 0, 0, 1))
{
drawShape(shape, true);
shape.angle = (shape.angle对模型进行训练,并使用验证集对模型进行验证和优化。
5.测试模型:使用测试集对 + 1) % 4;
drawShape(shape);
}
break;
case ' ':
while (checkShape模型进行测试,并计算模型的准确率、精度、召回率等性能指标。
以下是一个(shape, 0, 1, 0))
{
drawShape(shape, true);
shape.y++;
drawShape(shape简单的MATLAB代码示例,展示如何使用Transformer进行图像分类:
```
% 加载和划分数据);
}
break;
}
}
if (checkShape(shape, 0, 1, 0))
{
集
imds = imageDatastore('path/to/images', 'LabelSource', 'foldernames');
[imdsTrain,imdsValidation drawShape(shape, true);
shape.y++;
drawShape(shape);
}
else
{
fixShape(shape);
] = splitEachLabel(imds,0.7);
% 创建Transformer网络层
dModel = 64;
numHeads = clearLines();
shape = generateShape();
drawShape(shape);
if (!checkShape(shape, 0, 0,4;
dff = 256;
dropoutRate = 0.1;
transformerLayer = transformerLayer(dModel,numHeads,dff, 0))
{
cout << "Game Over!" << endl;
break;
}
}
DWORD end = GetTickCountdropoutRate);
% 构建分类器
numClasses = numel(categories(imdsTrain.Labels));
inputSize = [224 224 3();
if (end - start < speed)
Sleep(speed - (end - start));
}
return 0;
}
```
];
outputLayer = fullyConnectedLayer(numClasses,'Name','fc','WeightLearnRateFactor',10,'BiasLearnRateFactor',10);
%注意:本代码仅供学习参考,不保证完全正确和可靠,存在一些局限性和不 创建分类模型
layers = [
imageInputLayer(inputSize,'Name','input','Normalization','rescale-symmetric')
transformerLayer足,欢迎各位大佬指正和改进!
阅读全文