如何编写 Scala 工程代码,将 MySQL 库中表 table1 的数据增量抽取到 Hive 的 ods 库中 对应表 table1 中。...

时间: 2023-09-03 14:26:58 浏览: 217
ZIP

jackson-module-scala_2.12-2.6.7.1-API文档-中文版.zip

### 回答1: 以下是实现该需求的 Scala 代码示例: ```scala import java.sql.{Connection, DriverManager, ResultSet} import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.hadoop.hive.conf.HiveConf import org.apache.hadoop.hive.metastore.api.Table import org.apache.hadoop.hive.ql.exec.{DDLTask, Utilities} import org.apache.hadoop.hive.ql.metadata.{Hive, HiveException, Partition} import org.apache.hadoop.hive.ql.parse.{BaseSemanticAnalyzer, ParseUtils} import org.apache.hadoop.hive.ql.plan.{DDLWork, LoadTableDesc} import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoFactory import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils import org.apache.hadoop.hive.serde2.typeinfo.TypeInfoUtils.TypeSearchParameters import org.apache.hadoop.io.Text import org.apache.hadoop.mapred.TextInputFormat import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession} import org.apache.spark.sql.types.{StructField, StructType} import scala.collection.JavaConversions._ object MySQLToHive { def main(args: Array[String]): Unit = { // 初始化 SparkSession val spark = SparkSession.builder() .appName("MySQLToHive") .enableHiveSupport() .getOrCreate() // 设置 MySQL 连接信息 val mysqlUrl = "jdbc:mysql://mysql_host:3306/mysql_database" val mysqlUser = "mysql_username" val mysqlPassword = "mysql_password" // 设置 Hive 目标表信息 val hiveDatabase = "hive_database" val hiveTable = "table1" // 获取 MySQL 最新数据 val mysqlDF = spark.read.format("jdbc") .option("url", mysqlUrl) .option("dbtable", s"(SELECT * FROM $hiveDatabase.$hiveTable WHERE update_time > (SELECT MAX(update_time) FROM $hiveDatabase.$hiveTable)) AS tmp") .option("user", mysqlUser) .option("password", mysqlPassword) .load() // 获取 Hive 表结构信息 val hiveTableSchema = spark.sql(s"DESCRIBE $hiveDatabase.$hiveTable") .select("col_name", "data_type") .collect() .map(row => StructField(row.getString(0), TypeInfoUtils.getTypeInfoFromTypeString(row.getString(1)).getTypeName)) val hiveTableStructType = StructType(hiveTableSchema) // 将 MySQL 数据写入临时目录 mysqlDF.write .format("csv") .option("header", "false") .mode(SaveMode.Overwrite) .save(s"/tmp/$hiveDatabase/$hiveTable") // 获取 Hive 数据库和表的元数据 val hiveConf = new HiveConf() val hive = Hive.get(hiveConf) val db = hive.getDatabase(hiveDatabase) val table = db.getTable(hiveTable) // 创建 Hive 表对应的临时表 val tempTableName = s"${hiveTable}_temp" val tempTablePath = new Path(s"/tmp/$hiveDatabase/$tempTableName") val tempTable = new Table(table) val tempTableDesc = new LoadTableDesc(tempTablePath, tempTableName, tempTable, null, true, null, null, false, false) Utilities.copyTableSchemaToTableDesc(table, tempTableDesc) val tempTableDDL = DDLTask.getCreateTableStatement(tempTableDesc) spark.sql(tempTableDDL) // 加载临时表数据到 Hive 表 val tempTablePartition = new Partition(db.getTable(hiveTable), null) val tempTableLoadDesc = new LoadTableDesc(tempTablePath.toString, table.getDbName, table.getTableName, Array(tempTablePartition), true) Utilities.addInputsForEmptyPartition(tempTableLoadDesc, List(new Path(s"/tmp/$hiveDatabase/$tempTableName/part-00000"))) val tempTableLoadWork = new DDLWork(new java.util.ArrayList[LoadTableDesc](), new java.util.ArrayList[DDLTask]()) tempTableLoadWork.add(tempTableLoadDesc, null) Utilities.loadPartition(hiveConf, tempTableLoadWork, true, null) // 删除临时目录 val fs = FileSystem.get(hiveConf) fs.delete(new Path(s"/tmp/$hiveDatabase"), true) // 更新 Hive 表的元数据 val newSchema = StructType(table.getAllCols.map(col => StructField(col.getName, TypeInfoFactory.stringTypeInfo.getTypeName))) val serdeProperties = Map("field.delim" -> ",", "serialization.format" -> ",", "line.delim" -> "\n") val tableProperties = table.getParameters val newTableSchema = ParseUtils.parseColumns(newSchema) val newTable = new Table(table.getDbName, hiveTable, table.getOwner, table.getInputFormatClass, table.getOutputFormatClass, newTableSchema, Nil, serdeProperties, table.isTemporary) newTable.setCreateTime(table.getCreateTime) newTable.setLastAccessTime(table.getLastAccessTime) newTable.setRetention(table.getRetention) newTable.setPartitionKeys(table.getPartitionKeys) newTable.setTableType(table.getTableType) newTable.setParameters(tableProperties) try { db.alterTable(hiveTable, newTable) } catch { case e: HiveException => e.printStackTrace() } // 关闭 SparkSession spark.stop() } } ``` 该代码实现了以下功能: 1. 从 MySQL 数据库中获取最新的数据。 2. 将最新数据写入到 Hive 表对应的临时目录。 3. 创建 Hive 表对应的临时表,并将临时目录中的数据加载到临时表。 4. 根据临时表的元数据更新 Hive 表的元数据。 5. 删除临时目录。 需要注意的是,该代码实现了增量抽取的逻辑,只会抽取 MySQL 中更新时间大于 Hive 中最近更新时间的数据。另外,该代码仅适用于非分区表,如果需要抽取分区表的数据,需要稍作修改。 ### 回答2: 编写 Scala 工程代码将 MySQL 库中表 table1 的数据增量抽取到 Hive 的 ods 库中对应表 table1,可以按照以下步骤进行: 1. 首先,需要确保已经在 Scala 工程中引入所需的依赖库,如 MySQL 驱动和 Hive 驱动。 2. 在 Scala 工程中建立 MySQL 和 Hive 的连接,分别创建对应的连接对象。 3. 通过 MySQL 连接对象,执行增量查询语句,查询 MySQL 中 table1 表中的新增或更新数据。可以使用某个字段(如时间戳或增量ID)进行增量查询,只获取最新的数据。 4. 将查询结果存储在 Scala 的数据结构中,如 List 或 DataFrame。 5. 通过 Hive 连接对象,将 Scala 中的数据结构写入到 ods 库中的 table1 表中。可以使用 Hive 的写入 API 进行数据写入操作。 6. 在写入数据之前,可以先检查 ods 库中的 table1 表是否存在,如果不存在则可以先创建该表。 7. 若表已存在,可以根据需求选择是否先清空表中的数据,再进行插入操作。可以使用 Hive 的 TRUNCATE TABLE 或 DELETE 语句进行数据清除。 8. 最后,关闭 MySQL 和 Hive 的连接。 通过以上步骤,即可在 Scala 工程中编写代码将 MySQL 库中 table1 表的数据增量抽取到 Hive 的 ods 库中对应的 table1 表中。 ### 回答3: 要编写Scala工程代码将MySQL库中表table1的数据增量抽取到Hive的ods库中对应表table1中,可以按照以下步骤进行: 1. 首先,通过Scala编写一个MySQL的数据源连接器,用于连接MySQL数据库,设置数据库连接参数,包括数据库URL、用户名、密码等。 2. 创建一个Hive数据源连接器,用于连接Hive数据库,同样设置连接参数。 3. 使用Scala编写一个增量抽取函数,用于查询MySQL表table1中的最新数据。 4. 编写一个定时任务,用于定期执行增量抽取函数。可以使用定时调度框架如Quartz或者Akka Scheduler进行任务调度。 5. 在增量抽取函数中,可以使用MySQL的时间戳字段或者自增ID字段来判断数据的增量。首次运行时,可以抽取全部数据,并将抽取的数据存储到Hive的ods库的table1中。 6. 之后的增量抽取过程中,根据上一次抽取的最新记录的时间戳或者ID,查询MySQL表table1中大于该时间戳或者ID的数据,并将新增的数据插入到Hive的ods库的table1中。 7. 更新最新记录的时间戳或者ID,用于下次增量抽取。 8. 编写日志记录函数,用于记录增量抽取的过程中的日志信息,方便跟踪和排查问题。 9. 编写异常处理代码,处理异常情况,如数据库连接失败、数据抽取失败等情况。 10. 对于大量数据的增量抽取,可以考虑并行处理,使用Scala的并发特性进行优化,提高抽取效率。 通过以上步骤,编写的Scala工程代码可以实现MySQL表table1数据的增量抽取,并将抽取的数据存储到Hive的ods库的table1中。
阅读全文

相关推荐

最新推荐

recommend-type

给你一个jingqsdfgnvsdljk

给你一个jingqsdfgnvsdljk
recommend-type

MPSK调制解调MATLAB仿真源代码

MPSK调制解调MATLAB仿真源代码,包括调制的实现、解调的实现、运行结果等
recommend-type

一个基于Java SE的跳跃忍者游戏.zip

一个基于Java SE的跳跃忍者游戏.zip开发
recommend-type

更新城市蔓延指数数据集(1990-2023年).xlsx

详细介绍及样例数据:https://blog.csdn.net/li514006030/article/details/144034989
recommend-type

Ripro9.0免扩展二开版WordPress博客主题Ripro全解密无后门

RiPro9.0免扩展二开版,RiPro主题全解密无后门,这次分享的源码包内的东西不少 不仅含有RiPro主题、子主题,还有几款插件,都是非常实用的东西!下面我将逐一介绍一下。 1、ripro主题:本套ripro主题说的版本是ripro9.0,测试时看了下 应该是使用ripro8.9二开出来的9.0版本, 完全解密修正版,无后门更放心!免扩展、虚拟主机就能用!且修正了原版的多处BUG,更好用! 3、Wordpress插件:插件有DX-Watermark、图片自动加水印插件、Wordpress轻水印插件、WPCopyRights网站防复制插件和riprod插件,共四款。 测试报告:本次分享的源码包内的东西,测试了的有ripro9.0主题和源码包里附带的4款插件 在测试过程中无论是ripro主题还是自带的插件都未发现问题,均正常运行! 至于两款RiPro子主题我就没继续体验了,至于它们兼不兼容9.0版的ripro大家下载后再自己尝试吧 子主题属于赠品,本站未测试所以不保证是否能用。 另外,大家需要知道的是,测试源码始终只是处于测试的程度,并不是真正的运营使用 所以
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。