hadoop对网站每日访问次数的数据按照访问次数进行升序排序的idea代码
时间: 2024-11-05 11:26:50 浏览: 97
在Hadoop框架下,处理网站访问数据并按访问次数升序排序通常会涉及到MapReduce任务,这里我会给出一个简单的伪代码思路,实际操作时可能需要配合Hadoop Streaming、Pig或直接使用Hive等工具。
```java
// Hadoop Mapper部分
public class AccessCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split(",");
// 假设第一项是日期,第二项是访问次数
String date = fields[0];
int count = Integer.parseInt(fields[1]);
word.set(date);
context.write(word, one);
}
}
// Hadoop Reducer部分
public class AccessCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
// Driver代码
public class Main {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Access Count Sort");
job.setJarByClass(Main.class);
job.setMapperClass(AccessCountMapper.class);
job.setCombinerClass(AccessCountReducer.class); // 如果数据量小,可以在这里合并减少网络传输
job.setReducerClass(AccessCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("input_path")); // 输入文件路径
FileOutputFormat.setOutputPath(job, new Path("output_path")); // 输出结果路径
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
阅读全文