self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
时间: 2023-06-19 12:07:34 浏览: 173
这段代码是用来初始化一个相对位置编码矩阵的。在Transformer中,位置编码是为了让模型能够处理序列信息,因为Transformer没有像RNN那样有内部的状态来处理序列信息。在这个相对位置编码矩阵中,每个位置都对应着一个相对位置向量,这个相对位置向量会在每个注意力头中被加入到Q、K两个输入中,用来处理位置信息。
这个相对位置编码矩阵的大小是(2*Wh-1)*(2*Ww-1),其中Wh和Ww是窗口的高度和宽度,num_heads是注意力头的数量。每个注意力头都会有一个相对位置编码矩阵,用来处理不同的位置关系。这里用nn.Parameter来定义了一个可训练的相对位置编码矩阵,并初始化为全零。
相关问题
class Attention(nn.Module): def __init__(self, dim, num_ttokens, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., with_qkv=True): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.with_qkv = with_qkv if self.with_qkv: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.attn_drop = nn.Dropout(attn_drop) ## relative position bias self.num_ttokens = num_ttokens self.relative_position_bias_table = nn.Parameter(torch.zeros(2 * num_ttokens - 1, num_heads)) trunc_normal_(self.relative_position_bias_table, std=.02) coords = torch.arange(num_ttokens) relative_coords = coords[:, None] - coords[None, :] relative_coords += num_ttokens - 1 relative_coords = relative_coords.view(-1) self.register_buffer("relative_coords", relative_coords)
这是一个实现了注意力机制的神经网络模块,主要用于处理输入序列中不同位置之间的关系。其中,dim代表输入特征的维度,num_ttokens表示输入序列的长度,num_heads表示注意力头数,qkv_bias表示是否对注意力中的查询、键、值进行偏置,qk_scale表示缩放因子,attn_drop表示注意力中的dropout率,proj_drop表示输出结果的dropout率,with_qkv表示是否需要对输入进行线性变换。
在实现中,首先根据输入的维度和头数计算每个头的维度head_dim,然后根据缩放因子scale对查询、键、值进行线性变换,得到每个头的查询、键、值向量。如果with_qkv为True,则需要对输入进行线性变换得到查询、键、值向量;否则直接使用输入作为查询、键、值向量。
接着,计算注意力分数,即将查询向量和键向量点乘并除以缩放因子scale,然后通过softmax函数得到注意力权重。将注意力权重与值向量相乘并进行加权平均,得到最终的输出结果。
另外,为了考虑不同位置之间的关系,在实现中还引入了相对位置编码。具体来说,通过计算每个位置之间的相对距离,得到一个相对位置编码矩阵,然后将其转化为一个参数relative_position_bias_table,并通过注册buffer的方式保存在模块中。在计算注意力分数时,将查询向量和键向量的相对位置编码相加,从而考虑不同位置之间的相对关系。
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
这段代码是一个类的初始化方法,用于创建一个多头自注意力机制(multi-head self-attention)的模型。其中,dim表示输入特征的维度,window_size表示窗口大小,num_heads表示注意力头的数量。qkv_bias、qk_scale、attn_drop和proj_drop则是一些可选的超参数。具体来说,该初始化方法定义了一个相对位置偏差参数表,其大小为(2 * Wh - 1) * (2 * Ww - 1) * nH,其中Wh和Ww分别表示窗口的高度和宽度,nH表示注意力头的数量。
阅读全文