现在有一个train001.hdf5文件,内部有increment_0,increment_4,increment_8,increment_12以此类推一共30个文件,我需要通过输入一个指定数字的方式读取相应的文件,例如输入0.004,然后就可以读取increment_4内的文件
时间: 2023-06-15 13:04:49 浏览: 95
可以通过以下步骤实现:
1. 将输入的数字乘以1000并向下取整,得到对应的文件编号。例如,输入的0.004乘以1000得到4,对应的文件编号为increment_4。
2. 构造文件名,将文件编号和固定的文件名前缀拼接起来,得到完整的文件名。例如,文件名为"train001.hdf5",则对应的完整文件名为"train001_increment_4.hdf5"。
3. 使用Python中的h5py库打开对应的HDF5文件并读取数据。具体的代码如下:
```python
import h5py
# 输入的数字
num = 0.004
# 计算对应的文件编号
file_num = int(num * 1000)
# 构造文件名
filename = f"train001_increment_{file_num}.hdf5"
# 打开HDF5文件并读取数据
with h5py.File(filename, "r") as f:
data = f["dataset"][:] # 假设数据集名称为"dataset"
```
其中,假设数据集的名称为"dataset",可以将其替换为实际的数据集名称。同时,需要根据实际情况对文件名的前缀和后缀进行调整。
相关问题
读取输入数据 # 读取train.hdf5文件中的二维数组 with h5py.File('train001.hdf5', 'r') as f: arr = f['increment_0/phase/alpha-Ti/mechanical/O'][:] # 在每一行的最后添加一个新的数字 new_num = input('请输入一个新的数字:') arr = np.hstack((arr, np.ones((arr.shape[0], 1)) * float(new_num))) # 每1024行提取出来作为一个二维数组 input_arr_reshaped = arr.reshape((-1, 1024, 5)) # 将每个二维数组转换成三维数组 input_arr_3d = [] for i in range(input_arr_reshaped.shape[0]): input_arr_3d.append(np.reshape(input_arr_reshaped[i], (32, 32, 5))) # 将每个三维数组转换成5 * 32 * 32的三维数组 input_arr_5_32_32 = [] for i in range(len(input_arr_3d)): input_arr_5_32_32.append(np.transpose(input_arr_3d[i], (2, 0, 1))) # 对每个5 * 32 * 32的数组进行修改 modified_input_arr = [] for i in range(len(input_arr_5_32_32)): input_arr_i = input_arr_5_32_32[i] input_arr_i = np.array(input_arr_i) input_arr_i = torch.from_numpy(input_arr_i).float() input_arr_i = input_arr_i.unsqueeze(0) modified_input_arr.append(input_arr_i) # 输出第一个三维数组中的第一个纵向二维数组 input_arr01 = modified_input_arr[0] 帮我优化这段代码,使得这段代码功能完全不变的情况下更加精简,并帮我标好每一段的功能
# 读取train.hdf5文件中的二维数组并在每一行的最后添加新数字
import h5py
import numpy as np
with h5py.File('train001.hdf5', 'r') as f:
arr = f['increment_0/phase/alpha-Ti/mechanical/O'][:]
new_num = input('请输入一个新的数字:')
arr = np.hstack((arr, np.ones((arr.shape[0], 1)) * float(new_num)))
# 将每1024行提取出来作为一个二维数组
input_arr_reshaped = arr.reshape((-1, 1024, 5))
# 将每个二维数组转换成5 * 32 * 32的三维数组
input_arr_5_32_32 = np.transpose(input_arr_reshaped.reshape((-1, 32, 32, 5)), (0, 3, 1, 2))
# 对每个5 * 32 * 32的数组进行修改
import torch
modified_input_arr = [torch.from_numpy(arr).float().unsqueeze(0) for arr in input_arr_5_32_32]
# 输出第一个三维数组中的第一个纵向二维数组
input_arr01 = modified_input_arr[0]
读取输出数据 # 读取train.hdf5文件中的二维数组 with h5py.File('train001.hdf5', 'r') as f: data01 = f['increment_4/phase/alpha-Ti/mechanical/O'][:] data02 = f['/increment_4/phase/alpha-Ti/mechanical/epsilon_V^0.0(F)_vM'][:] data02 = data02[:, np.newaxis] data03 = f['/increment_4/phase/alpha-Ti/mechanical/sigma_vM'][:] data03 = data03[:, np.newaxis] data03 = data03 / 1e6 # 归一化到-1和1之间 data03 = (data03 - np.max(data03) / 2) / (np.max(data03) / 2) # 按行连接数组 arr = np.hstack((data01, data02, data03)) # 每1024行提取出来作为一个二维数组 output_arr_reshaped = arr.reshape((-1, 1024, 6)) # 将每个二维数组转换成三维数组 output_arr_3d = [] for i in range(output_arr_reshaped.shape[0]): output_arr_3d.append(np.reshape(output_arr_reshaped[i], (32, 32, 6))) # 将每个三维数组转换成6 * 32 * 32的三维数组 output_arr_6_32_32 = [] for i in range(len(output_arr_3d)): output_arr_6_32_32.append(np.transpose(output_arr_3d[i], (2, 0, 1))) # 对每个5 * 32 * 32的数组进行修改 modified_output_arr = [] for i in range(len(output_arr_6_32_32)): output_arr_i = output_arr_6_32_32[i] output_arr_i = np.array(output_arr_i) output_arr_i = torch.from_numpy(output_arr_i).float() output_arr_i = output_arr_i.unsqueeze(0) modified_output_arr.append(output_arr_i) # 输出第一个三维数组中的第一个纵向二维数组 output_arr01 = modified_output_arr[0] 帮我优化这段代码,使得这段代码功能完全不变的情况下更加精简,并帮我标好每一段的功能
以下是代码的优化和注释:
```python
import h5py
import numpy as np
import torch
# 读取train.hdf5文件中的二维数组
with h5py.File('train001.hdf5', 'r') as f:
# 读取三个二维数组
data01 = f['increment_4/phase/alpha-Ti/mechanical/O'][:]
data02 = f['/increment_4/phase/alpha-Ti/mechanical/epsilon_V^0.0(F)_vM'][:, np.newaxis]
data03 = f['/increment_4/phase/alpha-Ti/mechanical/sigma_vM'][:, np.newaxis]
# 归一化到-1和1之间
data03 = (data03 / 1e6 - np.max(data03) / 2) / (np.max(data03) / 2)
# 按行连接数组
arr = np.hstack((data01, data02, data03))
# 将每1024行提取出来作为一个二维数组
output_arr_reshaped = arr.reshape((-1, 1024, 6))
# 将每个二维数组转换成6 * 32 * 32的三维数组
output_arr_6_32_32 = np.transpose(output_arr_reshaped.reshape((-1, 32, 32, 6)), (3, 1, 2))
# 对每个5 * 32 * 32的数组进行修改
modified_output_arr = [torch.from_numpy(output_arr_6_32_32[i]).float().unsqueeze(0) for i in range(len(output_arr_6_32_32))]
# 输出第一个三维数组中的第一个纵向二维数组
output_arr01 = modified_output_arr[0]
```
注释中标注了每一段代码的功能。代码的优化主要包括:
1. 将读取的三个二维数组合并为一个二维数组时,直接使用 `np.hstack()` 函数即可,无需使用多行代码实现。
2. 将每个二维数组转换成6 * 32 * 32的三维数组时,可以直接使用 `output_arr_reshaped.reshape((-1, 32, 32, 6))` 实现。同时,使用 `np.transpose()` 函数将通道维移动到第一维,代码更加简洁。
3. 在对每个5 * 32 * 32的数组进行修改时,可以使用列表推导式实现,代码更加简洁。同时,可以直接在一行代码中完成 `torch.from_numpy()` 和 `float()` 的转换。
阅读全文