transformation算子与action算子的关系

时间: 2024-04-12 18:33:12 浏览: 87
在Spark中,Transformation算子和Action算子是两种不同的操作类型,它们在RDD上执行不同的操作,并且它们之间有一些关系。 Transformation算子是一种惰性操作,它们不会立即执行,而是返回一个新的RDD。这些算子用于对RDD进行转换和处理,例如过滤、映射、排序等。Transformation算子通常会生成一个新的RDD,而原始的RDD保持不变。 Action算子是一种触发RDD计算并返回结果的操作。当调用Action算子时,Spark会立即执行所有的Transformation算子,并将结果返回给驱动器程序或将结果写入外部存储系统。Action算子通常会触发Spark作业的执行。 Transformation算子和Action算子之间有以下关系: 1. Transformation算子可以被串联使用,以构建复杂的数据处理流水线。这些Transformation操作将会延迟执行,直到遇到Action算子。 2. 当遇到Action算子时,Spark会根据依赖关系和执行计划执行所有必要的Transformation操作,并生成结果。 简而言之,Transformation算子用于定义RDD之间的转换关系,而Action算子用于触发实际计算并返回结果。通过组合使用这两种类型的算子,我们可以构建复杂的数据处理和分析流程。
相关问题

Transformation算子

Transformation算子是Spark中的一种操作,用于对已知的RDD进行转换。它们通过一系列转换算子,将原始RDD的数据由一种形态转化为新的一种形态。常见的Transformation算子包括map、flatMap、filter、join、sample、groupByKey、reduceByKey、sortByKey等等。\[2\]这些操作具有lazy懒加载的特点,也就是说只有在遇到作业执行时,才会触发这些操作。值得注意的是,takeSample算子是一个action算子,而不是transformation算子,因为它会将抽样的数据加载到driver中。\[3\] #### 引用[.reference_title] - *1* *3* [spark算子--transformation篇](https://blog.csdn.net/zhaolimin6666/article/details/87874701)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [5.Transformation(转换算子)](https://blog.csdn.net/wenqiangW_/article/details/114476030)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

(四)编写一个集合并行化创建RDD的程序 (五)编写读取本地文件创建Spark RDD的程序 (六)Spark的Transformation算子应用 (七)Spark 的 Action常用算子应用

### 创建RDD 在Apache Spark中,可以通过并行化集合或读取外部数据源来创建弹性分布式数据集(Resilient Distributed Dataset, RDD)。对于Scala和Python这两种编程语言而言,操作方式有所不同。 #### 使用Scala创建RDD 通过`SparkContext.parallelize()`方法可以将已有的集合转换成RDD。下面是一个简单的例子: ```scala val sc = new org.apache.spark.SparkContext("local", "First App") // 并行化现有数组到集群上形成RDD val data = Array(1, 2, 3, 4, 5) val distData = sc.parallelize(data) ``` 为了从本地文件系统中的文件创建RDD,同样利用`textFile`函数指定路径即可[^1]。 ```scala // 从本地文件创建RDD val logData = sc.textFile("file:///path/to/local/file.txt").cache() ``` #### 使用Python创建RDD PySpark提供了几乎相同的API用于处理相同的操作,在这里展示如何用Python实现上述功能: ```python from pyspark import SparkConf, SparkContext conf = SparkConf().setAppName('FirstApp') sc = SparkContext(conf=conf) # 将列表转化为RDD data = [1, 2, 3, 4, 5] dist_data = sc.parallelize(data) # 从本地文件加载数据作为RDD log_data = sc.textFile("/path/to/local/file.txt").cache() ``` ### 转换与动作运算符的应用 一旦有了RDD之后就可以应用各种各样的转换(`Transformations`)和行动(`Actions`)操作来进行数据分析工作了。 #### Transformations变换 这些是懒惰求值的,意味着它们不会立即执行计算;相反,它们只是记录下要应用于基础数据上的操作序列。常见的有map()、filter()等。 ##### Scala版本: ```scala // 对每个元素乘以2再过滤掉小于等于8的结果 val multipliedFiltered = distData.map(_ * 2).filter(_ > 8) ``` ##### Python版本: ```python # 同样地对每个元素加倍后再筛选大于8的数据项 multiplied_filtered = (dist_data .map(lambda x: x * 2) .filter(lambda y: y > 8)) ``` #### Actions行为 当调用了action类型的命令时才会触发实际的任务提交给集群去运行之前定义好的一系列transformation指令链路。collect(), count()都是常用的actions之一。 ##### Scala实例: ```scala println(multipliedFiltered.collect().mkString(", ")) println(s"Total elements after transformation: ${multipliedFiltered.count()}") ``` ##### Python实例: ```python print(",".join(map(str, multiplied_filtered.collect()))) print(f"Total elements after transformation: {multiplied_filtered.count()}") ``` 以上就是关于怎样使用Scala或者Python编写基本的Spark应用程序来创建RDD、读取本地文件生成RDD以及运用Transformation和Action算子的方法介绍[^4]。
阅读全文

相关推荐

最新推荐

recommend-type

Informatica Union Transformation组件 详解

Informatica Union Transformation 组件详解 Informatica Union Transformation 组件是 PowerCenter 的一个重要组件,用于将多个输入源合并到一起,类似于 SQL 语句的 UNION ALL 语句。下面是 Union Transformation...
recommend-type

Informatica Joiner Transformation组件 详解

Informatica Joiner Transformation 组件是 Informatica PowerCenter 中的一种数据转换组件,用于连接两个不同源的关系表或者文件系统中的数据。该组件可以连接来自不同源的数据,也可以连接来自同一个源的数据。 ...
recommend-type

Informatica Filter Transformation组件 详解

多个条件之间的关系默认是逻辑与(AND),所以当输入"SALARY > 30000"和"SALARY 时,实际上相当于"SALARY > 30000 AND SALARY ,即筛选出薪资在30000至100000之间的员工记录。 在设计数据流时,建议尽早使用Filter ...
recommend-type

Aggregator Transformation组件 详解

与Expression Transformation不同,Aggregator Transformation需对数据进行分组后再进行计算,而Expression Transformation则是在逐行的基础上进行计算。 在Aggregator Transformation中,你可以配置各种输出端口...
recommend-type

Informatica Sorter Transformation组件 详解

它可以处理来自多种源的数据,包括关系数据库和flat file(平面文件)。在Informatica中,用户可以在一个映射中创建多个Sorter Transformation组件,对不同的字段进行排序。每个排序字段都可以独立设置,使得数据...
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。