TCP关闭连接的第二步之后TCP连接处于半关闭(half-close)状态。 T F

时间: 2024-03-31 17:34:44 浏览: 77
正确,TCP关闭连接的第二步是发送FIN报文,表示主动关闭连接方没有数据需要发送了。在接收方收到这个FIN报文后,它需要回复一个ACK报文,表示已经收到了发送方的FIN报文。此时,TCP连接进入半关闭状态,也称为半关闭(half-close)状态,表示只有主动关闭连接方不能发送数据,而被动关闭连接方仍可以发送数据。在被动关闭连接方发送完数据后,也会发送一个FIN报文,表示它也没有数据需要发送了。这时,双方都完成了关闭连接的过程,TCP连接彻底关闭。
相关问题

TCP断开连接的第二步

TCP断开连接的第二步是进行半关闭(Half-Close)。 在TCP连接中,当一方决定关闭连接时,它会向对方发送一个FIN(Finish)报文段,表示它不再发送数据。接收到FIN报文段的一方可以选择立即关闭连接,或者继续发送数据。 半关闭的过程如下: 1. 主动关闭方(发送FIN):主动关闭方发送一个FIN报文段给对方,表示它不再发送数据。 2. 被动关闭方(接收FIN):被动关闭方接收到FIN报文段后,进入CLOSE_WAIT状态,并发送一个ACK(确认)报文段给对方,表示已经接收到FIN报文段。 3. 被动关闭方(发送FIN):被动关闭方可以选择继续发送数据给主动关闭方,然后再发送一个FIN报文段给对方,表示它也不再发送数据。 4. 主动关闭方(接收FIN):主动关闭方接收到被动关闭方发送的FIN报文段后,进入TIME_WAIT状态,并发送一个ACK报文段给对方,表示已经接收到FIN报文段。 5. 主动关闭方(最终关闭):在TIME_WAIT状态持续一段时间后,主动关闭方最终关闭连接,释放所有相关资源。 半关闭允许一方在关闭连接之前完成当前正在传输的数据。通过这种方式,双方可以安全地完成数据的传输和处理,然后逐步关闭连接。

TCP连接从建立连接状态或关闭等待状态直接转换到关闭状态

TCP连接不能直接从建立连接状态或关闭等待状态转换到关闭状态,必须经过四次握手过程才能正常关闭连接。四次握手过程如下: 1. 主动关闭方发送一个FIN报文段,请求关闭连接。 2. 被动关闭方收到FIN报文段后,发送一个ACK报文段,表示收到了关闭请求。 3. 被动关闭方发送一个FIN报文段,请求关闭连接。 4. 主动关闭方收到FIN报文段后,发送一个ACK报文段,表示同意关闭连接。 只有经过这四次握手过程,TCP连接才能正常关闭。这是为了确保数据的可靠传输,避免数据丢失和重复传输。

相关推荐

最新推荐

recommend-type

C#实现TCP连接信息统计的方法

TCP连接信息统计可以帮助开发者了解应用程序的网络活动,包括已建立的连接、连接的状态以及连接的两端点信息等。本篇文章将深入探讨如何使用C#来实现这一功能。 首先,我们要引入必要的命名空间,这些命名空间提供...
recommend-type

ESP8266的TCP服务器连接错误解决办法

解决WIN8/WIN10下ESP8266作为客户端,电脑作为服务器,所连接失败的问题
recommend-type

S7-200 SMART Modbus TCP 服务器指令.docx

《S7-200 SMART Modbus TCP 服务器指令详解》 S7-200 SMART Modbus TCP 服务器指令的引入,为自动化控制领域的通信带来了显著的便利。这一技术的发展,伴随着STEP 7-Micro/WIN SMART V2.2编程软件及S7-200 SMART ...
recommend-type

Java基于TCP方式的二进制文件传输

主要为大家介绍了Java基于TCP方式的二进制文件传输,一个基于Java Socket协议之上文件传输的完整示例,基于TCP通信完成,感兴趣的小伙伴们可以参考一下
recommend-type

C++ boost::asio编程-同步TCP详解及实例代码

在本文中,我们将深入探讨C++中的boost::asio库,特别是关于同步TCP的编程。Boost.Asio是一个强大的库,它提供了跨平台的网络编程接口,支持多种协议,包括TCP、UDP和ICMP。其主要特点是使用了现代C++的设计模式,...
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"