ssd pytorch版本模型怎么打印precision
时间: 2023-08-03 21:09:36 浏览: 153
如果你已经训练了一个 SSD 模型,并且想要打印出其 Precision,可以按照以下步骤进行:
1. 首先,确保你已经加载了 PyTorch 库和 SSD 模型。
2. 然后,加载测试数据集,并使用模型对其进行预测。可以使用以下代码:
```
from datasets import COCODataset, VOCDataset
from ssd import build_ssd
import torch
# 加载测试数据集
test_dataset = COCODataset(root='/path/to/coco/', image_set='val2017',
transform=None, target_transform=None,
dataset_name='COCO')
# 加载 SSD 模型
net = build_ssd('test', 300, test_dataset.num_classes)
net.load_state_dict(torch.load('/path/to/weights.pth'))
# 对测试数据集进行预测
net.eval()
for i in range(len(test_dataset)):
image, target = test_dataset[i]
with torch.no_grad():
detections = net(image.unsqueeze(0))
```
3. 接下来,计算 Precision。可以使用以下代码:
```
from eval_utils import calculate_precision
# 计算 Precision
precision = calculate_precision(detections, target, iou_threshold=0.5)
print(precision)
```
在上面的代码中,`eval_utils` 包含了一个名为 `calculate_precision` 的函数,它可以计算 Precision。`detections` 是 SSD 模型对图像的预测结果,`target` 是图像的真实标注,`iou_threshold` 是计算 Precision 时使用的 IOU 阈值。函数返回的是一个标量,即 Precision 的值。
注意,`calculate_precision` 函数需要使用 Python 3.7 或更高版本。如果你的 Python 版本较低,可以手动计算 Precision。
阅读全文
相关推荐


















