opencv信用卡数字识别代码
时间: 2023-08-30 17:09:49 浏览: 100
以下是使用OpenCV进行信用卡数字识别的示例代码:
```python
import cv2
import numpy as np
# 读取图片并将其转换为灰度图像
img = cv2.imread('credit_card.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 对图像进行预处理
gray = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(gray, 50, 200, 255)
# 查找轮廓
_, contours, _ = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for i in range(len(contours)):
# 计算轮廓周长
perimeter = cv2.arcLength(contours[i], True)
# 进行轮廓近似
approx = cv2.approxPolyDP(contours[i], 0.02 * perimeter, True)
# 如果轮廓具有4个顶点,则可以认为找到了信用卡
if len(approx) == 4:
# 绘制轮廓并进行透视变换
cv2.drawContours(img, [approx], -1, (0, 255, 0), 2)
rect = np.float32([approx[0], approx[1], approx[2], approx[3]])
dst = np.float32([[0, 0], [500, 0], [500, 200], [0, 200]])
M = cv2.getPerspectiveTransform(rect, dst)
warp = cv2.warpPerspective(gray, M, (500, 200))
# 对变换后的图像进行二值化处理
_, thresh = cv2.threshold(warp, 150, 255, cv2.THRESH_BINARY)
# 查找数字轮廓并对其进行识别
_, digit_contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for j in range(len(digit_contours)):
x, y, w, h = cv2.boundingRect(digit_contours[j])
if w > 10 and h > 10:
digit = thresh[y:y+h, x:x+w]
resized_digit = cv2.resize(digit, (20, 20))
padded_digit = np.pad(resized_digit, ((5,5),(5,5)), "constant", constant_values=0)
cv2.imshow("Digit", padded_digit)
cv2.waitKey(0)
```
上述代码的作用是读取信用卡图片,使用Canny边缘检测算法查找轮廓,并对轮廓进行近似和透视变换,从而得到数字区域的图像。然后对数字区域的图像进行二值化处理和数字识别。
阅读全文