from sklearn.ensemble import RandomForestClassifier#引用 from sklearn.feature_selection import SelectFromModel#建模用
时间: 2024-04-11 22:30:27 浏览: 168
Random-Forest:使用随机森林分类器创建机器学习模型
这段代码导入了 scikit-learn 库中的随机森林分类器(RandomForestClassifier)和特征选择模块(SelectFromModel)。
首先,通过 `from sklearn.ensemble import RandomForestClassifier` 导入了随机森林分类器。随机森林是一种集成学习算法,通过构建多个决策树并进行投票或取平均来进行分类或回归。
接下来,通过 `from sklearn.feature_selection import SelectFromModel` 导入了特征选择模块。特征选择是一种通过选择最具有预测能力的特征来提高模型性能或减少特征空间的方法。`SelectFromModel` 是一种基于模型的特征选择方法,它可以根据模型的重要性或权重选择具有较高预测能力的特征。
这段代码的目的是引入随机森林分类器和基于模型的特征选择方法,以便在机器学习任务中使用这些功能。
阅读全文