基于机器学习的轴承故障检测分析代码
时间: 2024-09-14 14:09:04 浏览: 40
轴承故障检测智能算法研究与应用(论文+数据+代码)
基于机器学习的轴承故障检测通常涉及到数据分析、特征提取和模型训练的过程。以下是一个简化的示例流程:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
# 1. 数据预处理
data = pd.read_csv('bearing_data.csv') # 假设数据来源于CSV文件
X = data.iloc[:, :-1] # 特征数据
y = data['fault_label'] # 目标标签,0表示正常,1表示故障
# 2. 数据划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. 特征缩放
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 4. 模型训练
clf = RandomForestClassifier(n_estimators=100, random_state=42) # 使用随机森林分类器
clf.fit(X_train_scaled, y_train)
# 5. 预测及评估
y_pred = clf.predict(X_test_scaled)
print(classification_report(y_test, y_pred))
#
阅读全文