使用matlab编写pso算法,适应度函数为:f=0.5/((100.0y)/(0.1/y + 50.0)^2 + 10.0xz^2 - 100.0xz^3) + (0.5(0.037/(x*y)^(1/2))^(1/2))/z^(1/2)
时间: 2024-01-01 14:04:53 浏览: 112
这里是一个简单的PSO算法的Matlab代码,适应度函数已经被定义为f,参数设置如下:
- 粒子数目:particleNum
- 迭代次数:iterMax
- 惯性权重:w
- 学习因子:c1、c2
```matlab
% 定义适应度函数
f = @(x,y,z) 0.5/((100.0*y)/(0.1/y + 50.0)^2 + 10.0*x*z^2 - 100.0*x*z^3) + (0.5*(0.037/(x*y)^(1/2))^(1/2))/z^(1/2);
% 初始化PSO算法参数
particleNum = 50; % 粒子数目
iterMax = 100; % 迭代次数
w = 0.8; % 惯性权重
c1 = 2.0; % 学习因子1
c2 = 2.0; % 学习因子2
% 初始化粒子位置和速度
x = rand(particleNum, 1)*10;
y = rand(particleNum, 1)*10;
z = rand(particleNum, 1)*10;
vx = rand(particleNum, 1)*10 - 5;
vy = rand(particleNum, 1)*10 - 5;
vz = rand(particleNum, 1)*10 - 5;
% 初始化粒子最优位置和全局最优位置
pBestX = x;
pBestY = y;
pBestZ = z;
pBestVal = f(x, y, z);
gBestVal = min(pBestVal);
gBestIndex = find(pBestVal == gBestVal);
% 开始迭代
for iter = 1:iterMax
% 更新粒子速度和位置
for i = 1:particleNum
vx(i) = w*vx(i) + c1*rand()*(pBestX(i)-x(i)) + c2*rand()*(pBestX(gBestIndex)-x(i));
vy(i) = w*vy(i) + c1*rand()*(pBestY(i)-y(i)) + c2*rand()*(pBestY(gBestIndex)-y(i));
vz(i) = w*vz(i) + c1*rand()*(pBestZ(i)-z(i)) + c2*rand()*(pBestZ(gBestIndex)-z(i));
x(i) = x(i) + vx(i);
y(i) = y(i) + vy(i);
z(i) = z(i) + vz(i);
% 边界处理
x(i) = min(max(x(i), 0), 10);
y(i) = min(max(y(i), 0), 10);
z(i) = min(max(z(i), 0), 10);
% 更新最优位置
val = f(x(i), y(i), z(i));
if val < pBestVal(i)
pBestX(i) = x(i);
pBestY(i) = y(i);
pBestZ(i) = z(i);
pBestVal(i) = val;
end
if val < gBestVal
gBestVal = val;
gBestIndex = i;
end
end
% 输出迭代结果
fprintf("Iteration %d: gBestVal = %f, gBestX = %f, gBestY = %f, gBestZ = %f\n", iter, gBestVal, pBestX(gBestIndex), pBestY(gBestIndex), pBestZ(gBestIndex));
end
```
阅读全文