Training_data_Name = 'traindata0-255.mat' f = h5py.File('./DataSets/%s' % Training_data_Name, 'r') Training_data = f['inputs'][:] Training_lable = Training_data
时间: 2024-02-26 15:55:54 浏览: 129
这段代码主要用于读取一个名为 "traindata0-255.mat" 的文件,该文件应该在 "./DataSets/" 目录下。代码使用 h5py 库打开该文件,并读取其中的 "inputs" 数据集和 "Training_data" 标签。然后,将读取到的 "inputs" 数据赋值给 Training_data 变量,同时将 Training_data 变量的值赋给 Training_lable 变量。这段代码的目的是加载训练数据和标签,以便进行机器学习模型的训练。
相关问题
import tensorflow as tf import autokeras as ak # ## Titanic data downloaded with csv files# # ### Download training and testing csv files # In[ ]: import tensorflow as tf import pandas as pd TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv" TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv" train_file_path = tf.keras.utils.get_file("train.csv", TRAIN_DATA_URL) test_file_path = tf.keras.utils.get_file("eval.csv", TEST_DATA_URL) import autokeras as ak # Initialize the structured data classifier. clf = ak.StructuredDataClassifier(max_trials=10) # Try 10 different pipelines. # Feed the structured data classifier with training data. clf.fit( # The path to the train.csv file. x=train_file_path, # The name of the label column. y="survived",epochs=100, verbose=2 ) 以上程序出现错误,tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 186: invalid continuation byte
这个错误可能是由于你下载的CSV文件包含了无效的字符导致的。"UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd5 in position 186: invalid continuation byte" 意味着在文件的第186个位置出现了一个无效的续字符。
要解决这个问题,你可以尝试以下几种方法:
1. 检查你下载的CSV文件是否正确。尝试重新下载文件,确保下载的文件没有损坏。
2. 尝试使用其他编码格式打开CSV文件,如utf-16或latin-1。你可以尝试修改代码中的文件读取部分,指定所需的编码格式。
3. 检查CSV文件中是否包含特殊字符或不支持的字符。如果有,可以尝试删除或替换这些字符。
如果以上方法都无法解决问题,你可以尝试手动打开CSV文件,并检查文件中的第186个位置是否包含了无效字符。如果能够确定无效字符的位置,可以尝试手动删除或替换它。
希望这些方法能够帮助你解决问题。如果问题仍然存在,请提供更多关于错误信息和代码的详细信息,以便我能够更好地帮助你。
下载别人的数据集在YOLOV5进行训练发现出现报错,请给出具体正确的处理拌饭Plotting labels... C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight self._figure.tight_layout(*args, **kwargs) autoanchor: Analyzing anchors... anchors/target = 4.24, Best Possible Recall (BPR) = 0.9999 Image sizes 640 train, 640 test Using 0 dataloader workers Logging results to runs\train\exp20 Starting training for 42 epochs... Epoch gpu_mem box obj cls total labels img_size 0%| | 0/373 [00:00<?, ?it/s][ WARN:0@20.675] global loadsave.cpp:248 cv::findDecoder imread_('C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train'): can't open/read file: check file path/integrity 0%| | 0/373 [00:00<?, ?it/s] Traceback (most recent call last): File "C:\Users\Administrator\Desktop\Yolodone\train.py", line 543, in <module> train(hyp, opt, device, tb_writer) File "C:\Users\Administrator\Desktop\Yolodone\train.py", line 278, in train for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\tqdm\std.py", line 1178, in __iter__ for obj in iterable: File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 104, in __iter__ yield next(self.iterator) File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\dataloader.py", line 633, in __next__ data = self._next_data() File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\dataloader.py", line 677, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 525, in __getitem__ img, labels = load_mosaic(self, index) File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 679, in load_mosaic img, _, (h, w) = load_image(self, index) File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 634, in load_image assert img is not None, 'Image Not Found ' + path AssertionError: Image Not Found C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train Process finished with exit code 1
根据错误日志,出现了以下几个错误:
1. `cv::find imread_('C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train'): can't open/read file: check file path/integrity`:这个错误提示无法打开或读取文件,请检查文件路径和文件完整性。
2. `AssertionError: Image Not Found C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train`:这个错误提示图片未找到,请检查图片路径是否正确。
针对这些错误,你可以采取以下解决方法:
1. 检查文件路径和文件完整性:确保数据集中的标签和图像文件都存在于相应的目录中,并且文件名与代码中的路径一致。
2. 检查图片路径是否正确:查看代码中加载图像的部分,确保图像路径正确,包括文件名和文件后缀。
请注意,这些错误可能还有其他原因,需要根据具体情况进行排查。
阅读全文