多元分类支持向量机python实现
时间: 2024-08-04 07:00:35 浏览: 51
多元分类支持向量机(Multiclass Support Vector Machine, SVM)是一种常用的机器学习方法,特别适用于二分类问题,但也可以扩展到多类问题。在Python中,我们可以使用Scikit-learn库来实现多元分类SVM。这里是一个简单的步骤概述:
1. 导入所需的库:
```python
from sklearn import svm
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
```
2. 加载数据集(假设是iris数据集):
```python
iris = datasets.load_iris()
X = iris.data
y = iris.target
```
3. 数据预处理(对类别进行编码):
```python
le = LabelEncoder()
y_encoded = le.fit_transform(y)
```
4. 划分训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
```
5. 创建并训练多元分类SVM模型:
```python
svm_classifier = svm.SVC(kernel='linear') # 或者根据需求选择不同的核函数
svm_classifier.fit(X_train, y_train)
```
6. 预测测试集:
```python
y_pred = svm_classifier.predict(X_test)
```
7. 评估性能:
```python
from sklearn.metrics import classification_report, confusion_matrix
print(classification_report(y_test, y_pred))
```
阅读全文