IResNet pytorch代码
时间: 2024-12-06 12:08:04 浏览: 14
IResNet通常是指Inverted Residual Networks(倒置残差块)在PyTorch框架下的实现。这是一种在深度学习特别是卷积神经网络(CNNs)中常用的结构,它在ResNet(残差网络)的基础上进行了改进,通过更小的计算代价实现了更深的网络。
在PyTorch中,要创建一个简单的IResNet模型,你需要首先导入必要的库,如`torch`, `torch.nn`等,然后定义基础的模块,比如`BasicBlock`和`Bottleneck`(对于更深的网络),接着构造包含这些模块的残差块,并构建整个网络。以下是一个简化的例子:
```python
import torch
import torch.nn as nn
# 定义基本的ResNet块
class BasicBlock(nn.Module):
# ...
class Bottleneck(nn.Module):
# ...
# 倒置残差块的实例
def iresnet_block(block, in_channels, out_channels, stride=1):
return [
block(in_channels, out_channels, stride=stride),
block(out_channels, out_channels)
]
# 构建整个IResNet模型
class IResNet(nn.Module):
def __init__(self, block, layers, num_classes):
super(IResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# 主干部分
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# 全局平均池化和分类层
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
strides = [stride] + [1] * (blocks - 1)
layers = []
for stride in strides:
layers.append(iresnet_block(block, self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
# 使用示例:
ires_net = IResNet(BasicBlock, [2, 2, 2, 2], num_classes=1000)
```
阅读全文