求最大字段和(穷举法、动态规划、分治法)c语言代码实现
时间: 2024-11-15 14:23:07 浏览: 148
求最大字段和通常涉及到数组或矩阵的遍历问题,可以使用多种算法策略来解决,如穷举法、动态规划和分治法。这里分别给出三种方法的基本C语言代码实现:
1. **穷举法** (Brute Force):
```c
#include <stdio.h>
int maxSubarray(int arr[], int n) {
int max_current = arr[0];
int max_global = arr[0];
for (int i = 1; i < n; i++) {
max_current = (arr[i] > max_current + arr[i]) ? arr[i] : max_current + arr[i];
max_global = (max_current > max_global) ? max_current : max_global;
}
return max_global;
}
int main() {
int arr[] = { -2, 1, -3, 4, -1, 2, 1, -5, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
printf("Max subarray sum is %d\n", maxSubarray(arr, n));
return 0;
}
```
2. **动态规划** (Dynamic Programming):
```c
#include <stdio.h>
#include <stdlib.h>
int maxSubarraySum(int arr[], int n) {
int max_so_far = arr[0];
int curr_max = arr[0];
for (int i = 1; i < n; i++) {
curr_max = (arr[i] > curr_max + arr[i]) ? arr[i] : curr_max + arr[i];
max_so_far = (curr_max > max_so_far) ? curr_max : max_so_far;
}
return max_so_far;
}
int main() {
int arr[] = { -2, 1, -3, 4, -1, 2, 1, -5, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
printf("Max subarray sum using dynamic programming is %d\n", maxSubarraySum(arr, n));
return 0;
}
```
3. **分治法** (Divide and Conquer, 一般此场景不适合分治,因为它不是一个问题的自然分解,但为了展示,我们可以想象用类似分治的方式来寻找最大连续子数组):
```c
// 这里分治法实现并不典型,因为该问题不适用于分治策略,但它可以展示递归思想
#include <stdio.h>
void maxSubarrayRec(int arr[], int start, int end, int* maxSoFar) {
if (start == end) {
*maxSoFar = MAX(*maxSoFar, arr[start]);
} else {
int mid = (start + end) / 2;
int leftMax = *maxSoFar;
int rightMax = *maxSoFar;
maxSubarrayRec(arr, start, mid, &leftMax);
maxSubarrayRec(arr, mid + 1, end, &rightMax);
// 更新全局最大值
*maxSoFar = MAX(leftMax, rightMax + arr[mid]);
}
}
int main() {
int arr[] = { -2, 1, -3, 4, -1, 2, 1, -5, 4 };
int n = sizeof(arr) / sizeof(arr[0]);
int maxSoFar = INT_MIN;
maxSubarrayRec(arr, 0, n - 1, &maxSoFar);
printf("Max subarray sum using a non-standard divide-and-conquer approach is %d\n", maxSoFar);
return 0;
}
```
请注意,分治法在这道题上并不是最有效的解决方案。
阅读全文
相关推荐
















