基于keras搭建一个lenet-5网络,实现对mnist手写数字的识别。
时间: 2023-12-08 17:02:13 浏览: 123
首先,我们需要导入keras和相关的库:
```python
import keras
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.datasets import mnist
from keras.utils import to_categorical
```
然后我们加载mnist数据集,并对其进行预处理:
```python
# 加载mnist数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 数据预处理
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1).astype('float32') / 255
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1).astype('float32') / 255
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)
```
接下来,我们搭建Lenet-5网络模型:
```python
# 创建lenet-5网络
model = Sequential()
model.add(Conv2D(filters=6, kernel_size=(5, 5), strides=(1, 1), activation='tanh', input_shape=(28, 28, 1)))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(filters=16, kernel_size=(5, 5), strides=(1, 1), activation='tanh'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Flatten())
model.add(Dense(120, activation='tanh'))
model.add(Dense(84, activation='tanh'))
model.add(Dense(10, activation='softmax'))
```
最后,我们编译并训练模型,并在测试集上进行评估:
```python
# 编译模型
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_test, y_test))
# 在测试集上评估模型性能
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
通过以上步骤,我们就成功基于keras搭建了一个Lenet-5网络,并实现了对mnist手写数字的识别。
阅读全文