编写代码,使用Python语言,基于Keras框架,使用transformer模型实现单变量时间序列数据预测
时间: 2023-03-08 12:08:25 浏览: 155
可以使用以下Python代码来实现:import keras
from keras.layers import Input, Dense, Dropout, LSTM, Embedding
from keras.models import Model# 输入层
inputs = Input(shape=(None,1))
# 嵌入层
embedding_layer = Embedding(input_dim=len(data_dict), output_dim=100, input_length=None)(inputs)
# Transformer模型
x = keras.layers.Bidirectional(keras.layers.LSTM(128, return_sequences=True))(embedding_layer)
x = keras.layers.Attention()([x,x,x])
x = keras.layers.GlobalMaxPooling1D()(x)
# 输出层
outputs = Dense(1, activation='linear')(x)# 构建模型
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer='adam', loss='mse')
model.fit(x, y, epochs=20, batch_size=32)
相关问题
编写代码,使用Python语言,基于Keras框架,使用transformer模型实现单变量时间序列数据预测,多对一的输入输出且模型只是用encoder部分然后进行星星输出...
好的,以下是实现的代码:
```python
from keras.layers import Input, Dense, Dropout
from keras.models import Model
from keras.callbacks import EarlyStopping
from keras.optimizers import Adam
from keras.layers import LayerNormalization
from keras.layers import MultiHeadAttention, concatenate
from keras.layers import Conv1D, MaxPooling1D, Flatten
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
import numpy as np
# 加载数据
data = np.loadtxt('data.csv', delimiter=',')
X = data[:, :-1]
y = data[:, -1]
# 归一化数据
scaler = MinMaxScaler(feature_range=(0, 1))
X = scaler.fit_transform(X)
y = scaler.fit_transform(y.reshape(-1, 1))
# 定义模型参数
d_model = 128
num_heads = 8
dff = 512
num_encoder_layers = 2
num_conv_layers = 2
lstm_units = 64
dropout_rate = 0.1
input_shape = (X.shape[1], 1)
# 定义encoder部分
def encoder_block(inputs, d_model, num_heads, dff, dropout_rate):
# 多头注意力机制
attn_output = MultiHeadAttention(num_heads=num_heads, key_dim=d_model)(inputs, inputs)
attn_output = Dropout(dropout_rate)(attn_output)
out1 = LayerNormalization(epsilon=1e-6)(inputs + attn_output)
# 前向传播网络
ffn_output = Dense(dff, activation='relu')(out1)
ffn_output = Dense(d_model)(ffn_output)
ffn_output = Dropout(dropout_rate)(ffn_output)
out2 = LayerNormalization(epsilon=1e-6)(out1 + ffn_output)
return out2
# 定义模型
def transformer_model(input_shape, d_model, num_heads, dff, num_encoder_layers, num_conv_layers, lstm_units, dropout_rate):
inputs = Input(shape=input_shape)
x = Conv1D(filters=64, kernel_size=3, activation='relu')(inputs)
x = MaxPooling1D(pool_size=2)(x)
for i in range(num_conv_layers-1):
x = Conv1D(filters=64, kernel_size=3, activation='relu')(x)
x = MaxPooling1D(pool_size=2)(x)
x = Flatten()(x)
lstm = LSTM(units=lstm_units)(x)
encoder_outputs = [lstm]
for i in range(num_encoder_layers):
encoder_outputs.append(encoder_block(encoder_outputs[-1], d_model, num_heads, dff, dropout_rate))
encoder_outputs.pop(0)
encoder_outputs = concatenate(encoder_outputs, axis=-1)
outputs = Dense(1)(encoder_outputs)
model = Model(inputs=inputs, outputs=outputs)
return model
# 构建模型
model = transformer_model(input_shape, d_model, num_heads, dff, num_encoder_layers, num_conv_layers, lstm_units, dropout_rate)
model.summary()
# 训练模型
epochs = 50
batch_size = 16
opt = Adam(lr=0.001)
model.compile(optimizer=opt, loss='mse')
early_stopping = EarlyStopping(patience=10, monitor='val_loss', mode='min', restore_best_weights=True)
history = model.fit(X, y, epochs=epochs, batch_size=batch_size, validation_split=0.2, callbacks=[early_stopping])
# 预测
X_test = np.array([X[-1]])
y_pred = model.predict(X_test)
y_pred = scaler.inverse_transform(y_pred)
print('预测结果:', y_pred)
```
需要注意的是,这里使用了卷积神经网络和LSTM层来预处理时间序列数据,同时模型只使用了encoder部分进行输出。如果需要使用完整的transformer模型,可以在encoder后面添加decoder部分。
如何将需要预测的保存在excel的数据,导入lstm+transformer模型,python代码
在Python中,通常使用`pandas`库处理Excel数据,然后将其转换成适合神经网络模型(如LSTM + Transformer)训练的形式。以下是一个简单的步骤概述:
1. **安装所需库**:
首先确保已安装`numpy`, `pandas`, `tensorflow` (及其高级API Keras), 和 `sklearn`等库。如果尚未安装,可以运行:
```bash
pip install pandas numpy tensorflow keras sklearn
```
2. **加载Excel数据**:
使用`pandas`读取Excel文件:
```python
import pandas as pd
data = pd.read_excel('your_file.xlsx')
```
3. **预处理数据**:
- 确保数据已经整理好,X(特征)和y(目标变量)应该分开。时间序列数据通常需要按时间顺序排列。
- 如果有类别变量,可能需要进行独热编码(One-Hot Encoding)或标签编码。
4. **划分数据集**:
```python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
5. **序列化数据**:
对于LSTM,你需要把每个样本塑形为一个批次的时间步长。这通常通过使用`tf.data.Dataset`和`tf.keras.preprocessing.sequence`包来完成:
```python
def create_dataset(data, look_back=1):
dataX, dataY = [], []
for i in range(len(data) - 1):
a = data[i:(i + look_back), :]
dataX.append(a)
dataY.append(data[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 1 # 可视化或根据实际情况调整
X_seq, y_seq = create_dataset(X_train, look_back)
```
6. **构建LSTM + Transformer模型**:
使用Keras构建LSTM层、Transformer编码器以及其他必要层,并添加适当的激活函数和损失函数。
7. **训练模型**:
```python
model.compile(optimizer='adam', loss='mse') # 假设我们使用均方误差作为损失函数
model.fit(X_seq, y_seq, epochs=10, validation_data=(X_test, y_test))
```
8. **预测**:
```python
predictions = model.predict(X_test)
```
9. **评估结果**:
使用如`accuracy_score`或`mean_squared_error`等度量评估性能。
```
阅读全文