BYTE *zoom(int width,int height,BYTE *data,double lx,double ly){ BYTE *new_data=NULL; int new_width = round(double(lx*width)); int new_height = round(double(ly*height)); new_data=Getmemory(new_width*new_height); for(int i=0;i<height;i++){ for(int j=0;j<width;j++){ int x = round(double(lx*j)); int y = round(double(ly*i)); new_data[y*width+x] = data[i*width+j]; } } return new_data; }

时间: 2024-04-16 09:24:29 浏览: 71
下面是对给定代码的中文注释: ```cpp // 将图像进行缩放并返回缩放后的图像数据 // 参数width和height为原始图像的宽度和高度,data为原始图像数据 // 参数lx和ly为横向和纵向的缩放比例 BYTE *zoom(int width, int height, BYTE *data, double lx, double ly){ BYTE *new_data = NULL; // 计算缩放后的图像宽度和高度 int new_width = round(double(lx * width)); int new_height = round(double(ly * height)); // 分配内存空间来存储缩放后的图像数据 new_data = Getmemory(new_width * new_height); // 遍历每个像素,进行缩放处理 for(int i = 0; i < height; i++){ for(int j = 0; j < width; j++){ // 根据缩放比例计算新的像素位置 int x = round(double(lx * j)); int y = round(double(ly * i)); // 将原始图像中的像素值复制到缩放后的图像数据中 new_data[y * new_width + x] = data[i * width + j]; } } // 返回缩放后的图像数据 return new_data; } ``` 希望这些注释能帮助你理解代码的功能和实现过程。如果还有其他问题,请随时提问。

相关推荐

int main(int argc, char *argv[]) { ec_param *ecp; sm2_ec_key *key_B; message_st message_data; int type = TYPE_GFp; int point_bit_length = 256; char **sm2_param = sm2_param_recommand; ecp = ec_param_new(); ec_param_init(ecp, sm2_param, type, point_bit_length); key_B = sm2_ec_key_new(ecp); sm2_ec_key_init(key_B, sm2_param_d_B[ecp->type], ecp); memset(&message_data, 0, sizeof(message_data)); sm2_hex2bin((BYTE *)sm2_param_k[ecp->type], message_data.k, ecp->point_byte_length); sm2_bn2bin(key_B->d, message_data.private_key, ecp->point_byte_length); sm2_bn2bin(key_B->P->x, message_data.public_key.x, ecp->point_byte_length); sm2_bn2bin(key_B->P->y, message_data.public_key.y, ecp->point_byte_length); message_data.decrypt = (BYTE *)OPENSSL_malloc(message_data.message_byte_length + 1); memset(message_data.decrypt, 0, message_data.message_byte_length + 1); BIGNUM *P_x; BIGNUM *P_y; //BIGNUM *d; BIGNUM *k; xy_ecpoint *P; xy_ecpoint *xy1; xy_ecpoint *xy2; int pos1; BYTE t; int i; sm2_hash local_C_3; P_x = BN_new(); P_y = BN_new(); k = BN_new(); P = xy_ecpoint_new(ecp); xy1 = xy_ecpoint_new(ecp); xy2 = xy_ecpoint_new(ecp); BN_bin2bn(message_data.public_key.x, ecp->point_byte_length, P_x); BN_bin2bn(message_data.public_key.y, ecp->point_byte_length, P_y); BN_bin2bn(message_data.k, ecp->point_byte_length, k); xy_ecpoint_init_xy(P, P_x, P_y, ecp); xy_ecpoint_mul_bignum(xy1, ecp->G, k, ecp); xy_ecpoint_mul_bignum(xy2, P, k, ecp); char cryptstring[1024]; scanf("%s", cryptstring); / 利用函数sm2_hex2bin将16进制字符串cryptstring转换成二进制流填充到message_data.C里 / / 计算明文长度 message_data.message_byte_length */ message_data.klen_bit = message_data.message_byte_length * 8;(请根据注释补充)

最新推荐

recommend-type

基于java中byte数组与int类型的转换(两种方法)

在Java编程中,将`int`类型转换为`byte`数组以及从`byte`数组还原回`int`类型是常见的操作,特别是在网络编程中。这是因为网络传输的数据通常以字节流的形式存在,而`int`等基本数据类型需要进行适当的序列化才能...
recommend-type

在Java中int和byte[]的相互转换

在Java编程语言中,有时我们需要将整型(int)数据与字节数组(byte[])之间进行转换,这在处理网络通信、序列化或存储数据时尤为常见。本文将深入探讨Java中int与byte[]的转换方法。 首先,让我们理解为什么需要进行...
recommend-type

java int转byte和long转byte的方法

在Java编程中,有时我们需要将整型(int)和长整型(long)的数据转换为字节(byte),这在处理网络传输、二进制序列化或内存优化等场景中尤其常见。以下是一些关于如何在Java中进行这些转换的方法。 首先,让我们看下...
recommend-type

C++中int类型按字节打印输出的方法

C++中int类型按字节打印输出的方法 在C++中,int类型的变量占用4个字节的内存空间,而在某些情况下,我们需要将int类型的变量按字节打印输出,这时候我们就需要使用指针来访问和操作内存中的数据。在本文中,我们将...
recommend-type

C# byte转为有符号整数实例

byte[] data = new byte[] { 0xF8, 0x66, 0x55, 0x44 }; // 假设这是一个4字节的数据 // 转换为8位有符号整数(sbyte) sbyte sb = (sbyte)data[0]; // 转换为16位有符号整数(Int16) Int16 int16 = BitConverter...
recommend-type

计算机人脸表情动画技术发展综述

"这篇论文是关于计算机人脸表情动画技术的综述,主要探讨了近几十年来该领域的进展,包括基于几何学和基于图像的两种主要方法。作者姚俊峰和陈琪分别来自厦门大学软件学院,他们的研究方向涉及计算机图形学、虚拟现实等。论文深入分析了各种技术的优缺点,并对未来的发展趋势进行了展望。" 计算机人脸表情动画技术是计算机图形学的一个关键分支,其目标是创建逼真的面部表情动态效果。这一技术在电影、游戏、虚拟现实、人机交互等领域有着广泛的应用潜力,因此受到学术界和产业界的广泛关注。 基于几何学的方法主要依赖于对人体面部肌肉运动的精确建模。这种技术通常需要详细的人脸解剖学知识,通过数学模型来模拟肌肉的收缩和舒张,进而驱动3D人脸模型的表情变化。优点在于可以实现高度精确的表情控制,但缺点是建模过程复杂,对初始数据的需求高,且难以适应个体间的面部差异。 另一方面,基于图像的方法则侧重于利用实际的面部图像或视频来生成动画。这种方法通常包括面部特征检测、表情识别和实时追踪等步骤。通过机器学习和图像处理技术,可以从输入的图像中提取面部特征点,然后将这些点的变化映射到3D模型上,以实现表情的动态生成。这种方法更灵活,能较好地处理个体差异,但可能受光照、角度和遮挡等因素影响,导致动画质量不稳定。 论文中还可能详细介绍了各种代表性的算法和技术,如线性形状模型(LBS)、主动形状模型(ASM)、主动外观模型(AAM)以及最近的深度学习方法,如卷积神经网络(CNN)在表情识别和生成上的应用。同时,作者可能也讨论了如何解决实时性和逼真度之间的平衡问题,以及如何提升面部表情的自然过渡和细节表现。 未来,人脸表情动画技术的发展趋势可能包括更加智能的自动化建模工具,更高精度的面部捕捉技术,以及深度学习等人工智能技术在表情生成中的进一步应用。此外,跨学科的合作,如神经科学、心理学与计算机科学的结合,有望推动这一领域取得更大的突破。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实时处理中的数据流管理:高效流动与网络延迟优化

![实时处理中的数据流管理:高效流动与网络延迟优化](https://developer.qcloudimg.com/http-save/yehe-admin/70e650adbeb09a7fd67bf8deda877189.png) # 1. 数据流管理的理论基础 数据流管理是现代IT系统中处理大量实时数据的核心环节。在本章中,我们将探讨数据流管理的基本概念、重要性以及它如何在企业级应用中发挥作用。我们首先会介绍数据流的定义、它的生命周期以及如何在不同的应用场景中传递信息。接下来,本章会分析数据流管理的不同层面,包括数据的捕获、存储、处理和分析。此外,我们也会讨论数据流的特性,比如它的速度
recommend-type

如何确认skopt库是否已成功安装?

skopt库,全称为Scikit-Optimize,是一个用于贝叶斯优化的库。要确认skopt库是否已成功安装,可以按照以下步骤操作: 1. 打开命令行工具,例如在Windows系统中可以使用CMD或PowerShell,在Unix-like系统中可以使用Terminal。 2. 输入命令 `python -m skopt` 并执行。如果安装成功,该命令将会显示skopt库的版本信息以及一些帮助信息。如果出现 `ModuleNotFoundError` 错误,则表示库未正确安装。 3. 你也可以在Python环境中导入skopt库来测试,运行如下代码: ```python i
recommend-type

关系数据库的关键字搜索技术综述:模型、架构与未来趋势

本文档深入探讨了"基于关键字的数据库搜索研究综述"这一主题,重点关注于关系数据库领域的关键技术。首先,作者从数据建模的角度出发,概述了关键字搜索在关系数据库中的应用,包括如何设计和构建有效的数据模型,以便更好地支持关键字作为查询条件进行高效检索。这些模型可能涉及索引优化、数据分区和规范化等,以提升查询性能和查询结果的相关性。 在体系结构方面,文章对比了不同的系统架构,如全文搜索引擎与传统的关系型数据库管理系统(RDBMS)的融合,以及基于云计算或分布式计算环境下的关键字搜索解决方案。这些架构的选择和设计对于系统的扩展性、响应时间和查询复杂度有重大影响。 关键算法部分是研究的核心,文章详细分析了诸如倒排索引、布尔逻辑运算、TF-IDF(Term Frequency-Inverse Document Frequency,词频-逆文档频率)等算法在关键字搜索中的作用。同时,也讨论了近似匹配、模糊查询以及动态调整权重等技术,这些都是为了提高搜索的准确性和用户体验。 然而,论文并未忽视现有技术存在的问题,比如查询效率低下、对自然语言理解的局限、数据隐私保护等。针对这些问题,作者提出了未来研究的方向,包括但不限于改进算法以提升搜索速度,增强对用户查询意图的理解,以及开发更安全的隐私保护策略。 此外,本文还提及了关键词搜索的关键术语,如"top-k查询",这是一种返回最相关结果前k个的查询方式,常用于信息检索和推荐系统中。而"数据库模式"则涵盖了数据结构和组织方式,是实现关键字搜索的基础。 这篇综述论文旨在为研究人员和开发者提供一个全面的视角,以便他们能够理解基于关键字的数据库搜索技术的现状,识别挑战,并推动该领域未来的发展。通过阅读这篇论文,读者可以了解到如何设计更智能、更高效的数据库搜索系统,以满足日益增长的数据处理需求。