已知存在数据集,使用jupyter notebook统计排名前 250 名电影的对映上映年份的电影数量
时间: 2023-08-22 19:03:44 浏览: 103
好的,首先你需要导入pandas库用于数据处理和统计分析。然后载入包含电影数据的文件,假设文件名为 "movies.csv",并将其转换为pandas数据帧。接下来,你可以使用value_counts()函数统计排名前 250 名电影的对映上映年份的电影数量,并将结果存储在一个字典中。以下是示例代码:
```python
import pandas as pd
# 载入电影数据文件
movies_df = pd.read_csv("movies.csv")
# 统计排名前 250 名电影的对映上映年份的电影数量
year_counts = movies_df.head(250)["year"].value_counts().to_dict()
# 输出结果
print(year_counts)
```
运行后,你将会得到一个字典,其中键是对映上映年份,值是对应年份的电影数量。
阅读全文
相关推荐


















