帮我提供一个VGG19网络模型结构,用tensorflow
时间: 2023-09-09 11:04:51 浏览: 112
### 回答1:
答:VGG19网络模型的tensorflow实现如下:input_shape = (224, 224, 3)model = tf.keras.models.Sequential()model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=input_shape, padding='same'))
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(4096, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(4096, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(1000, activation='softmax'))model.summary()
### 回答2:
VGG19是一种深度卷积神经网络模型,由于网络结构相对简单而广泛使用于计算机视觉任务中。以下是一个用TensorFlow实现的VGG19网络模型结构的示例代码:
```python
import tensorflow as tf
def vgg19(input_shape):
model = tf.keras.models.Sequential([
# 第一段卷积层
tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=input_shape),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D((2, 2), strides=(2, 2)),
# 第二段卷积层
tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D((2, 2), strides=(2, 2)),
# 第三段卷积层
tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D((2, 2), strides=(2, 2)),
# 第四段卷积层
tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D((2, 2), strides=(2, 2)),
# 第五段卷积层
tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'),
tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'),
tf.keras.layers.MaxPooling2D((2, 2), strides=(2, 2)),
# 全连接层
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dense(4096, activation='relu'),
tf.keras.layers.Dense(1000, activation='softmax')
])
return model
# 创建VGG19模型
model = vgg19((224, 224, 3))
# 输出模型结构
model.summary()
```
以上代码使用了TensorFlow的Sequential模型,通过添加不同的层构建了VGG19网络模型。模型包括五段卷积层和三个全连接层,其中包含不同深度和参数的卷积核用于特征提取,最后经过全连接层输出分类结果。最终的模型结构通过调用`model.summary()`进行打印输出。
### 回答3:
VGG19是一种经典的深度卷积神经网络模型,它由19个卷积层和全连接层组成。以下是一个用TensorFlow实现的VGG19网络模型结构。
```python
import tensorflow as tf
def vgg19(input_shape):
model = tf.keras.Sequential()
# Block 1
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=input_shape))
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# Block 2
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# Block 3
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# Block 4
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# Block 5
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
# Fully Connected Layers
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(4096, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(4096, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(1000, activation='softmax'))
return model
# 使用VGG19网络模型
model = vgg19((224, 224, 3))
# 输出模型结构
model.summary()
```
这个VGG19网络模型包含了5个卷积块以及全连接层,通过调用`vgg19(input_shape)`函数可以创建一个VGG19网络模型。输入的`input_shape`参数是一个三元组,表示输入图片的形状(高度、宽度、通道数)。
该模型使用了ReLU作为激活函数,卷积层使用了3x3的卷积核大小,并进行了填充(padding)来保持输出大小不变,在卷积层之后加入了池化层(MaxPooling2D)来进行下采样。最后的全连接层有两个4096个神经元的隐藏层,然后是1000个神经元的输出层,应用了softmax激活函数。
以上是一个用TensorFlow实现的VGG19网络模型结构,可以根据需要进行调整和扩展。
阅读全文