卷积神经网络 回归问题
时间: 2023-11-21 14:57:07 浏览: 119
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,通常用于处理具有类似网格结构的数据,例如图像。CNN在图像和语音识别、推荐系统、自然语言处理等领域都有广泛应用。回归问题是指预测一个连续值的问题,例如预测股票价格或者房价等。卷积神经网络也可以用于回归问题,其输出层可以是一个或多个神经元,每个神经元输出一个连续值。下面是两个实现卷积神经网络回归问题的例子:
1. Pytorch实现卷积神经网络回归问题
```python
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 1)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练代码省略
```
2. MATLAB实现CNN卷积神经网络多输入回归预测
```matlab
% 加载数据
load('data.mat');
x = data(:, 1:7)';
y = data(:, 8)';
% 构建网络
layers = [
imageInputLayer([7 1 1])
convolution2dLayer([3 1], 16)
reluLayer
maxPooling2dLayer([2 1], 'Stride', 2)
convolution2dLayer([3 1], 32)
reluLayer
maxPooling2dLayer([2 1], 'Stride', 2)
fullyConnectedLayer(64)
reluLayer
fullyConnectedLayer(1)
regressionLayer];
% 训练网络
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 64, ...
'ValidationData', {x, y}, ...
'ValidationFrequency', 10, ...
'Verbose', false);
net = trainNetwork(x, y, layers, options);
% 预测
x_test = [1 2 3 4 5 6 7]';
y_pred = predict(net, x_test);
disp(y_pred);
```
阅读全文