用pytorch写sd点云的深度学习代码
时间: 2024-02-07 13:03:53 浏览: 159
使用pytorch进行深度学习的教程
下面是一个简单的用PyTorch写SD点云深度学习代码的例子:
```python
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import numpy as np
# 定义数据集
class SDDataset(Dataset):
def __init__(self, data_path):
self.data = np.load(data_path)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
# 定义模型
class SDNet(nn.Module):
def __init__(self):
super(SDNet, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 6 * 6, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool2(x)
x = self.conv3(x)
x = nn.functional.relu(x)
x = self.pool3(x)
x = x.view(-1, 64 * 6 * 6)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 训练代码
def train(model, train_loader, criterion, optimizer, device):
model.train()
train_loss = 0
for batch_idx, data in enumerate(train_loader):
inputs = data[:, :, :, :3]
targets = data[:, :, :, 3]
inputs = inputs.to(device)
targets = targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(train_loader)
# 测试代码
def test(model, test_loader, criterion, device):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data in test_loader:
inputs = data[:, :, :, :3]
targets = data[:, :, :, 3]
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
test_loss += criterion(outputs, targets).item()
preds = outputs.argmax(dim=1)
correct += preds.eq(targets.view_as(preds)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = correct / len(test_loader.dataset)
return test_loss, accuracy
# 主函数
def main():
# 设置超参数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
epochs = 10
batch_size = 64
learning_rate = 0.001
data_path = "sd_data.npy"
# 加载数据集
dataset = SDDataset(data_path)
train_dataset, test_dataset = torch.utils.data.random_split(dataset, [8000, 2000])
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# 初始化模型、损失函数和优化器
model = SDNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 训练和测试模型
for epoch in range(1, epochs + 1):
train_loss = train(model, train_loader, criterion, optimizer, device)
test_loss, accuracy = test(model, test_loader, criterion, device)
print("Epoch {}: Train Loss: {:.4f}, Test Loss: {:.4f}, Accuracy: {:.2f}%".format(epoch, train_loss, test_loss, accuracy * 100))
if __name__ == '__main__':
main()
```
上述代码中,我们定义了一个 `SDDataset` 类来加载 SD 点云数据集,定义了一个 `SDNet` 类来实现 SD 点云的深度学习模型。我们使用 PyTorch 自带的 DataLoader 类来加载训练和测试数据集,并使用 Adam 优化器来训练模型。最后,我们使用 `train` 函数来训练模型,使用 `test` 函数来测试模型,并在主函数中执行训练和测试过程。
阅读全文