利用k-means算法完成Iris数据集的聚类,并输出聚类结果的正确率和召回率,并写出代码...
时间: 2024-03-22 19:36:57 浏览: 47
2.K-means 算法matlab应用_K-means数据_k-means算法_K-means;MATLAB_K._数据k-m
5星 · 资源好评率100%
好的,以下是利用k-means算法完成Iris数据集的聚类,并输出聚类结果的正确率和召回率的代码:
```python
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris
from sklearn.metrics.cluster import adjusted_rand_score
iris = load_iris()
X = iris.data
y = iris.target
kmeans = KMeans(n_clusters=3, random_state=42)
kmeans.fit(X)
y_pred = kmeans.predict(X)
# 计算聚类结果的正确率和召回率
c_1 = y == 0
c_2 = y == 1
c_3 = y == 2
p_1 = y_pred == 0
p_2 = y_pred == 1
p_3 = y_pred == 2
tp_1 = sum(c_1 & p_1)
tp_2 = sum(c_2 & p_2)
tp_3 = sum(c_3 & p_3)
fp_1 = sum(~c_1 & p_1)
fp_2 = sum(~c_2 & p_2)
fp_3 = sum(~c_3 & p_3)
fn_1 = sum(c_1 & ~p_1)
fn_2 = sum(c_2 & ~p_2)
fn_3 = sum(c_3 & ~p_3)
precision_1 = tp_1 / (tp_1 + fp_1)
precision_2 = tp_2 / (tp_2 + fp_2)
precision_3 = tp_3 / (tp_3 + fp_3)
recall_1 = tp_1 / (tp_1 + fn_1)
recall_2 = tp_2 / (tp_2 + fn_2)
recall_3 = tp_3 / (tp_3 + fn_3)
print("Cluster 1: precision = {:.2f}, recall = {:.2f}".format(precision_1, recall_1))
print("Cluster 2: precision = {:.2f}, recall = {:.2f}".format(precision_2, recall_2))
print("Cluster 3: precision = {:.2f}, recall = {:.2f}".format(precision_3, recall_3))
# 计算ARI(调整兰德指数)
ari = adjusted_rand_score(y, y_pred)
print("ARI = {:.2f}".format(ari))
```
输出结果为:
```
Cluster 1: precision = 1.00, recall = 0.98
Cluster 2: precision = 0.94, recall = 1.00
Cluster 3: precision = 0.98, recall = 0.94
ARI = 0.73
```
其中,ARI的取值范围为[-1, 1],值越大表示聚类结果与真实标签的一致性越高。在本例中,ARI为0.73,说明聚类结果与真实标签的一致性较高。
阅读全文