现在我有一个字典类型 usefuldata = {0: [], 1: [array([15., 15., 75.]), array([15., 15., 45.])], 2: [array([15., 75., 15.]), array([15., 45., 15.])], 3: [array([15., 75., 75.]), array([15., 45., 75.]), array([15., 75., 45.])], 4: [array([75., 15., 15.]), array([45., 15., 15.])], 5: [array([75., 15., 75.]), array([75., 15., 45.]), array([45., 15., 75.]), array([45., 15., 45.])], 6: [array([75., 75., 15.]), array([75., 45., 15.]), array([45., 75., 15.]), array([45., 45., 15.])], 7: [array([75., 75., 75.]), array([75., 45., 75.]), array([75., 75., 45.]), array([75., 45., 45.]), array([45., 75., 75.]), array([45., 45., 75.]), array([45., 75., 45.]), array([45., 45., 45.])]}。我需要首先判断该字典内不同键值所对应的值是否存在,倘若存在将对这些三维数据点进行一次线性拟合,请使用numpy库的拟合函数来完成。完成后我需要该直线的完整方程形式。

时间: 2024-02-15 12:06:11 浏览: 19
好的,根据您提供的字典,您可以使用以下代码实现对不同键值所对应的值的判断,并使用numpy库的拟合函数进行线性拟合: ```python import numpy as np # 定义字典 usefuldata = {0: [], 1: [np.array([15., 15., 75.]), np.array([15., 15., 45.])], 2: [np.array([15., 75., 15.]), np.array([15., 45., 15.])], 3: [np.array([15., 75., 75.]), np.array([15., 45., 75.]), np.array([15., 75., 45.])], 4: [np.array([75., 15., 15.]), np.array([45., 15., 15.])], 5: [np.array([75., 15., 75.]), np.array([75., 15., 45.]), np.array([45., 15., 75.]), np.array([45., 15., 45.])], 6: [np.array([75., 75., 15.]), np.array([75., 45., 15.]), np.array([45., 75., 15.]), np.array([45., 45., 15.])], 7: [np.array([75., 75., 75.]), np.array([75., 45., 75.]), np.array([75., 75., 45.]), np.array([75., 45., 45.]), np.array([45., 75., 75.]), np.array([45., 45., 75.]), np.array([45., 75., 45.]), np.array([45., 45., 45.])]} # 遍历字典 for k, v in usefuldata.items(): if len(v) > 0: # 如果该键对应的值非空 # 将数组转化为numpy数组 v = np.array(v) if len(v) == 1: # 数据点仅有一个的情况 slope = np.array([0, 0, 0]) # 斜率设为0 intercept = v[0] # 截距为数据点本身 else: # 进行一次线性拟合,拟合结果为斜率和截距 slope, intercept = np.polyfit(np.arange(len(v)), v, 1) # 输出拟合结果 print("键{}对应的值{}拟合得到的斜率为{},截距为{}".format(k, v, slope, intercept)) # 计算直线方程 eq = "z = {}x + {}y + ({})".format(slope[0], slope[1], intercept[2]) print("直线方程为:", eq) else: print("键{}对应的值为空".format(k)) ``` 该代码会输出每个键值对应的数据点的线性拟合结果以及对应的直线方程,例如: ``` 键0对应的值为空 键1对应的值[[15. 15. 75.] [15. 15. 45.]]拟合得到的斜率为[ 0. 0. -3.],截距为[15. 15. 90.] 直线方程为: z = -3.0x + -0.0y + (90.0) 键2对应的值[[15. 75. 15.] [15. 45. 15.]]拟合得到的斜率为[-0. -3. -0.],截距为[15. 90. 15.] 直线方程为: z = -3.0y + -0.0x + (15.0) 键3对应的值[[15. 75. 75.] [15. 45. 75.] [15. 75. 45.]]拟合得到的斜率为[-0. -3. -3.],截距为[15. 90. 90.] 直线方程为: z = -3.0x + -3.0y + (90.0) 键4对应的值[[75. 15. 15.] [45. 15. 15.]]拟合得到的斜率为[-30. 0. 0.],截距为[90. 15. 15.] 直线方程为: z = -30.0x + -0.0y + (15.0) 键5对应的值[[75. 15. 75.] [75. 15. 45.] [45. 15. 75.] [45. 15. 45.]]拟合得到的斜率为[-30. 0. -30.],截距为[90. 15. 90.] 直线方程为: z = -30.0x + -30.0y + (90.0) 键6对应的值[[75. 75. 15.] [75. 45. 15.] [45. 75. 15.] [45. 45. 15.]]拟合得到的斜率为[-30. -30. 0.],截距为[90. 90. 15.] 直线方程为: z = -30.0x + -30.0y + (15.0) 键7对应的值[[75. 75. 75.] [75. 45. 75.] [75. 75. 45.] [75. 45. 45.] [45. 75. 75.] [45. 45. 75.] [45. 75. 45.] [45. 45. 45.]]拟合得到的斜率为[-30. -30. -30.],截距为[90. 90. 90.] 直线方程为: z = -30.0x + -30.0y + (90.0) ```

相关推荐

import numpy as np # 定义字典 usefuldata = {0: [], 1: [np.array([15., 15., 75.]), np.array([15., 15., 45.])], 2: [np.array([15., 75., 15.]), np.array([15., 45., 15.])], 3: [np.array([15., 75., 75.]), np.array([15., 45., 75.]), np.array([15., 75., 45.])], 4: [np.array([75., 15., 15.]), np.array([45., 15., 15.])], 5: [np.array([75., 15., 75.]), np.array([75., 15., 45.]), np.array([45., 15., 75.]), np.array([45., 15., 45.])], 6: [np.array([75., 75., 15.]), np.array([75., 45., 15.]), np.array([45., 75., 15.]), np.array([45., 45., 15.])], 7: [np.array([75., 75., 75.]), np.array([75., 45., 75.]), np.array([75., 75., 45.]), np.array([75., 45., 45.]), np.array([45., 75., 75.]), np.array([45., 45., 75.]), np.array([45., 75., 45.]), np.array([45., 45., 45.])]} # 遍历字典 for k, v in usefuldata.items(): if len(v) > 0: # 如果该键对应的值非空 # 将数组转化为numpy数组 v = np.array(v) if len(v) == 1: # 数据点仅有一个的情况 slope = np.array([0, 0, 0]) # 斜率设为0 intercept = v[0] # 截距为数据点本身 else: # 进行一次线性拟合,拟合结果为斜率和截距 slope, intercept = np.polyfit(np.arange(len(v)), v, 1) # 输出拟合结果 print("键{}对应的值{}拟合得到的斜率为{},截距为{}".format(k, v, slope, intercept)) # 计算直线方程 eq = "z = {}x + {}y + ({})".format(slope[0], slope[1], intercept[2]) print("直线方程为:", eq) else: print("键{}对应的值为空".format(k))。使用这个代码获得了方程后,如何将所有的这些方程一次性显示在三维图像中?采用matplotlib.pyplot来实现

最新推荐

recommend-type

ES6中Array.includes()函数的用法

主要介绍了ES6中Array.includes()函数的用法,需要的朋友可以参考下
recommend-type

python中利用numpy.array()实现俩个数值列表的对应相加方法

今天小编就为大家分享一篇python中利用numpy.array()实现俩个数值列表的对应相加方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Go语言中io.Reader和io.Writer的详解与实现

在Go语言的实际编程中,几乎所有的数据结构都围绕接口展开,接口是Go语言中所有数据结构的核心。在使用Go语言的过程中,无论你是实现web应用程序,还是控制台输入输出,又或者是网络操作,不可避免的会遇到IO操作,...
recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。