写一段基于pytorch的条件生成对抗神经网络用于生成新数据的代码
时间: 2023-03-04 12:30:20 浏览: 115
基于Pytorch的带卷积网络生成对抗网络GAN深度学习网络模型训练和测试实现
好的,以下是一段基于 PyTorch 的条件生成对抗神经网络的示例代码,用于生成新数据:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 定义生成器网络
class Generator(nn.Module):
def __init__(self, input_size, num_classes, output_size):
super(Generator, self).__init__()
self.input_size = input_size
self.num_classes = num_classes
self.output_size = output_size
# 定义输入层
self.input_layer = nn.Linear(input_size + num_classes, 128)
# 定义隐藏层
self.hidden_layer = nn.Linear(128, 256)
# 定义输出层
self.output_layer = nn.Linear(256, output_size)
def forward(self, input, labels):
# 将输入和标签连接起来
x = torch.cat([input, labels], 1)
# 传播输入层
x = nn.functional.leaky_relu(self.input_layer(x), 0.2)
# 传播隐藏层
x = nn.functional.leaky_relu(self.hidden_layer(x), 0.2)
# 传播输出层
x = nn.functional.tanh(self.output_layer(x))
return x
# 定义判别器网络
class Discriminator(nn.Module):
def __init__(self, input_size, num_classes):
super(Discriminator, self).__init__()
self.input_size = input_size
self.num_classes = num_classes
# 定义输入层
self.input_layer = nn.Linear(input_size + num_classes, 256)
# 定义隐藏层
self.hidden_layer = nn.Linear(256, 128)
# 定义输出层
self.output_layer = nn.Linear(128, 1)
def forward(self, input, labels):
# 将输入和标签连接起来
x = torch.cat([input, labels], 1)
# 传播输入层
x = nn.functional.leaky_relu(self.input_layer(x), 0.2)
# 传播隐藏层
x = nn.functional.leaky_relu(self.hidden_layer(x), 0.2)
# 传播输出层
x = nn.functional.sigmoid(self.output_layer(x))
return x
# 定义训练函数
def train(num_epochs, data_loader, generator, discriminator, g_optimizer, d_optimizer, criterion):
for epoch in range(num_epochs):
for i, (real_data, labels) in enumerate(data_loader):
# 训练判别器
discriminator.zero_grad()
real_data = real_data.view(real_data.size(0), -1)
labels = labels.view(labels.size(0), -1)
real_pred = discriminator(real_data, labels)
real_loss = criterion(real_pred, torch.ones(real_pred.size()))
real_loss.backward()
noise = torch.randn(real_data.size(0), generator.input_size)
fake_labels = torch.randint(0, 10, (real_data.size(0), 1))
fake_data = generator(noise, fake_labels).detach()
fake_pred = discriminator(fake_data, fake_labels)
fake_loss = criterion(fake_pred, torch.zeros(fake_pred.size()))
fake_loss.backward()
d_optimizer.step()
# 训练生成器
generator.zero_grad()
noise = torch
阅读全文